| 研究生: |
莊士緯 Chuang, Shih-Wei |
|---|---|
| 論文名稱: |
使用糖化纈胺酸分子模版為目標分子的辨識孔洞製作糖化血紅素生化感測器 Using a N-(1-deoxy-D-fructopyranos-1-yl)-L-valine imprinted polymer as the recognition cavities for the target molecule to fabricate HbA1c biosensor |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 分子模版 、糖化纈胺酸 、糖化血紅素 |
| 外文關鍵詞: | N-(1-deoxy-β-D-fructopyranose-1-yl)-L-valine, MIP, HbA1c |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖化血紅素是葡萄糖與血紅素反應的產物,生成機制為萄萄糖的醛基與血紅素β球蛋白鏈N端纈胺酸的胺基,進行縮和反應,失去一分子的水,先形成不穩定的希夫鹼之後,接著進行阿馬多里重排反應,最後形成穩定的N取代糖基化纈胺酸(糖化纈胺酸),相較於快速波動的血糖值,以糖化血紅素來判斷長期血糖值的變化更值得信賴。
本研究使用合成的小分子,糖化纈胺酸當作糖化血紅素之模型分子,其分子結構與質量,分別由紅外光光譜儀、質量光譜儀、元素分析儀以及核磁共振光譜儀來確定。
以循環伏安法於不同pH溶液,進行掃描糖化纈胺酸的結果顯示,鹼性的環境有利於陽極氧化糖化纈胺酸,且能得到較好的感測靈敏度。
以3-胺基苯硼酸為單體,糖化纈胺酸為模版分子,於水溶液的環境,將分子模版製作在導電玻璃上,移除模版分子之後,於高分子的結構中留下具有辨識效果之孔洞,以開路電位法進行量測果糖與葡萄糖的結果為,糖化纈胺酸分子模版修飾電極對果糖的選擇性優於葡萄糖,顯示模印有糖化纈胺酸分子的電極可辨識模版分子的部分結構。
Amadori compounds are formed when a carbonyl group of a sugar reacts with an amine group of an amino group of an amino acid or protein, resulting in an unstable schiff base(imine). After undergoing an Amadori rearrangement, a stable N-substituted(1-deoxy-ketos-1-yl)-amine is formed, this product is called an Amadori compound.
Of all the possible Amadori compounds, many studies now are investigating glycated hemoglobin (HbA1c), which is a significant biomarker for diabetes patients. When compared with the dynamic fluctuation of blood sugar concentrations, HbA1c serves as a long-term indicator (2-3 months). Erythrocytes are freely permeable to glucoses, which can react with the N-terminal valine of the β-chain of hemoglobin, to form the Amadori compound. As a result, the terminal valine becomes a N-(1-deoxy-β-D-fructopyranose-1-yl)-L-valine (Fru-Val).
The model compound in this study was Fru-Val, which was synthesized as in a previous paper. The purity and structure were checked by infrared spectroscopy, elemental analysis and nuclear magnetic resonance spectroscopy respectively. Further , the mass was checked by mass spectroscopy.
The cyclic voltammograms(CVs) carried out at different pH values showed the anodic oxidation of Fru-Val is a pH dependent reaction. The CVs reveal that under basic conditions, by OH- exchange, Fru-Val is in equilibrium with its eneaminol tautomer ; however, competing with this reaction at potentials in the range 1.0 to 1.2V is the hydrolysis of water, thereby rendering determination of a limiting current difficult.
An approach to determining the net current of Fru-Val(10mM) in pH10 buffer has been made by subtracting currents determined in pH10 buffer from those made in a similar solution but additionally containing 10mM Fru-Val. The result of this is a CV profile in which the net current declines at an potential greater than 1.15V.
Interestingly, an 3-aminophenyl boronic acid polymer, molecularly imprinted with Fru-Val, showed a step-wise change in response to 10 mM D-fructose additions. A similar polymer was able to demonstrate a significantly greater response to D-fructose than to D-glucose; thereby indicating that the fructose part of Fru-Val molecule had been successfully imprinted and was able to show recognition for the D-fructose part of the Fru-Val imprinting template.
1.Goldstein D., Little R., Lorenz R., Malone J., Nathan D., Peterson C., Sacks D., Tests of Glycemia in Diabetes, Diabetes Care, 27, 1761-1773 (2004).
2.Tahara Y, Shima K. Kinetics of HbA1c, Glycated Albumin, and Fructosmine and Analysis of their Weight Functions against Preceding Plasma Glucose Level. Diabetes Care, 18, 440-447 (1995).
3.Caro E., Marcé R., Borrull F., Cormack P.A.G., Sherrington D.C., Application of Molecularly Imprinted Polymers to Solid-phase Extraction of Compounds from Environmental and Biological Samples, Trac-Trends Anal. Chem., 25, 143-154 (2006).
4.Thévenot D., Toth K., Durst R., Wilson G., Electrochemical Biosensors: Recommended Definitions and Classification, Biosens. Bioelectron., 16, 121-131 (2001).
5.Nanjo Y., Hayashi R., Toshio Y., An Enzymatic Method for the Rapid Measurement of the Hemoglobin A1c by a Flow-Injection System Comprised of an Electrochemical Detector, Anal. Chim. Acta., 583, 45-54 (2007).
6.Shinkai S., Takeuchi M., Molecular Design of Synthetic Receptors with Dynamic, Imprinting, and Allosteric Functions, Biosens. Bioelectron., 20, 1250-1259 (2004).
7.Ogawa K., Stöllener D., Scheller F., Warsinke A., Ishomura F., Tsugawa W., Ferri S., Sode K., Development of a Flow-Injection Analysis (FIA) Enzyme Sensor for Fructosyl Amine Monitoring, Anal. Bioanal. Chem., 373, 211-214.(2002)
8.Yan S., Fang Y., Gao Z., Quartz Crystal Microbalance for the Determination of Daminozide Using Molecularly Imprinted Polymers as Recognition Element, Biosens. Bioelectron.,22, 1087-1091 (2007).
9.Holthoff E.L., Bright F.V., Molecularly Templated Materials in Chemical Sensing, Anal. Chim. Acta., 594, 147-161 (2007).
10.Turner N.W., Liu X., Pilesky S.A., Hlady V., Britt D.W., Recognition of Conformational Changes in β-Lactoglobin by Molecularly Imprinted Thin Films, Biomacromolecules, 8, 2781-2787 (2007).
11.Shiomi T., Matsui M., Mizukami F., Sakaguchi K., A Method for the Molecular Imprinting of Hemoglobin on Silica Surfaces Using Silan, Biomaterials, 26, 5564-5571 (2005).
12.Lin H.Y., Rick J., Chou T.C., Optimizing the formulation of A Myoglobin Molecularly Imprinted Thin-Film Polymer—Formed Using a Micro-Contact Imprinting Method, Biosens. Bioelectron., 22, 3293-3301 (2207).
13.Rachkov A., Minoura N., Recognition of Oxytocin and Oxytocin-Related Peptides in Aqueous Media Using A Molecularly Imprinted Polymer Synthesized by the Epitope Approach., J. Chromatogr. A, 889, 111-118 (2000).
14.Rachkov A., Minoura N., Towards Molecularly Imprinted Polymers Selective to Peptides and Proteins. The Epitope Approach., BBA-Proteins Proteomics., 1544, 255-266 (2001)
15.Lin T.Y., Hu C.H., Chou T.C, Determination of Albumin Concentration by MIP-QCM Sensor, Biosens. Bioelectron., 20, 75-81 (2004).
16.Odabaşi M., Say R., Denizli A., Molecular Imprinted Particles for Lysozyme Purification, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27, 90-99 (2007).
17.Hsu C.Y., Lin H.Y., Thomas J.L., Wu B.T., Chou T.C., Incorporation of Styrene Enhances Recognition of Ribonuclease A by Molecularly Imprinted Polymers, Biosens. Bioelectron., 22, 355-363 (2006).
18.Huang C.Y., Syu M.J., Chang Y.S., Chang C.H., Chou T.C., Liu B.D., A Portable Potentiostat for the Bilirubin-Specific Sensor Prepared from Molecular Imprinting, Biosens. Bioelectron., 22, 1694-1699 (2007).
19.Nishino H., Huang C.S., Shea K.J., Selective Protein Capture by Epitope Imprinting, Angew. Chem.-Int. Edit., 45, 2392-2396 (2006).
20.Bernard A., Renault J.P., Michel B., Bosshard H.R., Delamarche E. Microcontact Printing of Proteins, Adv. Mater., 12, 1067-1070 (2000).
21.Rachkov A., Hu M., Bulgarevich E., Matsumoto T., Minoura N., Molecularly Imprinted Polymers Prepared in Aqueous Solution Selective for [Sar1,Ala8]Angiotensin II, Anal. Chim. Acta, 504, 191-197 (2004).
22.Matioli G. T., Niewisch H. B., Electrophoresis of Hemoglobin in Single Erythrocytes, Science, 150, 1824-1826 (1965).
23.Kaplan L.A., Pesce A.J., Clinical Chemistry, Theory, Analysis, and Correlation, 3rd, Mosby Book Inc., St. Louis, USA, pp716-717, 1997.
24.Garrett R. H., Grisham C. M., Principles of Biochemistry with a Human Focus, 1st edition, Thomson Learning, Stamford, USA, pp398-402, 2002.
25.Koenig R. J., Peterson C. M., Jones R. L., Saudek C., Lehrman M., Cerami A., Correlation of Glucose Regulation and hemoglobin A1c in Diabetes Mellitus, N. Engl. J. Med., 295, 417-420 (1976).
26.Holmquist W. R., Schroeder W. A., A New N-terminal Blocking Group Involving A Schiff Base in Hemoglobin A1C, Biochemistry, 5, 2489-2503 (1966).
27.Koening R. J., Blobstein S. H., Cerami A., Structure of Carbohydrate of Hemoglobin A1c, J. Biol. Chem., 252, 2992-2997 (1977).
28.Bierhaus A., Hofmann A. M., Ziegler R., Nawroth P. P., AGEs and their Interaction with AGE-Receptors in Vascular Disease and Diabetes Mellitus. I. The AGE Concept, Cardiovasc. Res., 37, 586-600 (1998).
29.Bucala R., Vlassara H., Cerami A., Advanced Glycosylation Endproducts: Role in Diabetic and Non-Diabetic Vascular Disease, Drug Dev. Res., 32, 77-89 (1994).
30.Hodge J.E., Rist C.E., The Amadori Rearrangement under New Conditions and its Significance for Non-enzymatic Browning Reactions, J. Am. Chem. Soc., 75, 316-322 (1952).
31.Stütz, Arnold E., Topics in Current Chemistry, Berlin, Springer, Germany, p128, 2001.
32.Pickup J.C., Crook M.A., Blood-Glucose and Glycated Hemoglobin Measurement in Hospital-Which Method, Diabetic Med., 10, 402-411 (1993).
33.Bry L., Chen P.C., Sacks D.B., Effects of Hemoglobin Variants and Chemically Modified Derivatives on Assays for Glycohemoglobin, Clin. Chem., 47, 153-163 (2001).
34.Burd J.F., Neyer G., Electrochemical Determination of Fructosamine, U. S. Patent: 5639672 (1997).
35.Keil P., Mortensen H.B., Christophersen C., Fructosylvaline-A Simple Model of the N-Terminal Residue of Human Heamoglobin A1c, Acta Chem. Scand., B, Org. Chem. Biochem., 39, 191-193 (1985).
36.Tsugawa W., Ishimura F., Ogawa K., Sode K., Development of an Enzyme Sensor Ultizing a Novel Fructosyl Amine Oxidase from a Marine Yeast, Electrochemistry, 68, 869-871 (2000).
37.Sode K., Ohta S., Yanai Y., Yamazaki T., Construction of a Molecular Imprinting Catalyst Using Target Analogue Template and Its Application for an Amperometric Fructosylamine Sensor, Biosens. Bioelectron., 18, 1485-1490 (2003).
38.Rajkumar R., Katterle M., Warsinke A., Möhwald H., Scheller F.W., Thermometric MIP Sensor for Fructosyl Valine, Biosens. Bioelectron., 23, 1195-1199 (2008).
39.MacDiarmid, A.G.., Heeger A.J., Semiconducting and Metallic Covalent Polymers: (CH)X and its Derivatives, Abstracts of Papers of the American Chemical Society, 180, 174 (1980).
40.Lange U., Roznyatovskaya N.V., Mirsky V.M., Conducting Polymers in Sensors and Arrays, Anal. Chim. Acta., 614, 1-26 (2008).
41.Usui T., Yoshino M., Watanebe H., Hayase F., Determination of Glyceraldehyde Formed in Glucose Degradation and Glycation, Biosci. Biotechnol. Biochem., 71, 2162-2168, (2007).
42.Yukawa N., Takamura H., Matoba T., Determination of Total Compounds in Aqueous Media, J. Am. Oil Chem. Soc., 70, 881-884 (1993).
43.Darder M., Carsero F., Parietne E., Lorenzo E., Biosensors Based on Membrane-Bound Enzymes Immobilized in A 5-(Octydithio)-2-nitrobenzonic Acid Layer on Gold Electrode, Anal. Chem., 72, 3784-3792 (2000).
44.Shoji E., Freund M.S., Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid), J. Am. Chem. Soc., 124, 12486-12493 (2002).
45.Carey F.A., Organic Chemistry, 5th edition, McGraw Hill Companies, Inc., New York, USA, p1040, 2003.
46.Mester L., The Structure of Sugar Phenylosazones, Angew. Chem.-Int. Edit., 4, 574-582 (1965).
47.何敏夫,臨床化學,第三版,合記圖書出版社,台北市,台灣,pp 236-269,2000年.
48.Foster K., McCormac T., Electrochemical Properties of An Osmium(II) Copolymer Film and its Electrocatalytic Ability Towards the Oxidation of Ascorbic Acid in Acidic and Neutral pH, Electroanalysis, 18, 1097-1104 (2006).
49.Ramesh P., Sampath S., Selective Determination of Uric Acid in Presence of Ascorbic Acid and Dopamine at Neutral pH Using Exfoliated Graphite Electrodes, Electroanalysis, 16, 886-869 (2004).
50.Bard A.J., Faulkner L.R., Electrochemical Methods: Fundamentals and Applications, 2nd, John Wiley & Sons Inc., New York, USA, p.809, 2002.
51.Yan J., Springsteen G., Deeter S., Wang B., The Relationship Among pKa, pH, and Binding Constants in the Interactions Between Boronic Acids and Diols –it is not as simple as it appears, Tetrahedron, 60, 11205-11209 (2004).
校內:2058-08-25公開