簡易檢索 / 詳目顯示

研究生: 林玉靜
Lin, Yu-Jing
論文名稱: PC12細胞在缺氧缺糖模型下的光電特性之研究
Optoelectrical Properties of PC12 Cells under Oxygen Glucose Deprivation Model
指導教授: 陳家進
Chen, Jia-Jin Jason
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 54
中文關鍵詞: 微電極陣列阻抗缺氧缺糖模型滲透壓光循環器近紅外光反向散射內源性光訊號
外文關鍵詞: Intrinsic optical signal, Microelectrode array, Impedance, Oxygen/glucose deprivation, Osmolality, Optical circulator, Near-infrared, Backscattering
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多研究利用光訊號或阻抗量測技術,觀測細胞在不同狀態下的生物活性變化。研究顯示組織內吸收或散射光特性的變化,將會影響生物體內自發性光訊號的改變。另一方面,細胞電阻抗量測值則是取決於細胞與量測介面的貼附能力。因此本研究的目的即是利用微陣列電極技術,同時量測細胞在缺氧缺糖狀況下的光訊號以及電訊號的反應。在本研究中,我們利用光循環器以及自製光纖探針將近紅外光訊號傳導到細胞上,並且經由相同的光纖擷取反射光訊號,同時藉由光頻率調變技術比較原訊號與反射光訊號,以得出振幅與相位的變化。藉著比較細胞光散射訊號與阻抗量測儀量取的電阻抗值,我們可以推測細胞在大腦中風情況下的生物特性。首先我們觀測細胞在不同滲透壓環境下的變化,以驗證系統的可行性。結果顯示不同滲透壓導致細胞體積改變時,細胞光散射訊號的振幅向位也會跟著改變。確定系統可行性與穩定性後,我們量測細胞光電訊號在缺氧缺糖狀況下的反應,並觀察到當細胞受到缺氧缺糖的刺激後有明顯膨脹的現象,同時也伴隨著光訊號振幅上升以及細胞電阻抗下降。當細胞加入神經生長因子後,延遲了細胞膨脹的反應時間,且在光散射與電阻抗訊號上也有相同的延遲現象。由研究結果顯示經由本光電系統架設所得出的光電訊號,不僅能獲得普通細胞型態上的改變,更能得到因細胞內生理狀態變化所導致的不同光電訊號特性。

    A number of studies have been conducted using intrinsic optical signal (IOS) or impedance measurement for observing culture cell activity under varied physical or chemical challenges. Research has shown that IOS reflects changes in transmittance and scattering light of tissue. Hence, the impedance is related to the adhesion of cell to the substrate. The aim of this study is to simultaneously record the backscattering IOS and the impedance of cells cultured on multielectrode arrays (MEA) under hypoxic condition using oxygen glucose deprivation (OGD) model. An optical circulator (OC) was adopted as optical probe to deliver the near infrared (NIR) light source and receive backscattering light at the same path aiming the target cells at a close proximity. The optimal probe to dish distance was determined from a series of experiments and theoretical calculation. Frequency-modulated NIR was applied to derive the amplitude attenuation and phase shift between incident and receiving light. The impedance of cells cultured on MEA was scanned using a commercially available LCR meter. During validation experiment of osmotic shock, the changes in magnitude and phase of backscattering light correlated well with osmotic challenges which are mainly attributed to cell volume change. Under OGD test, the intensity of IOS suddenly increased and impedance decreased due to cell swelling. After cell treated with nerve growth factor (NGF), the effect of cell swelling was delayed under OGD which correlated well among IOS, impedance measurements and cell images. In conclusion, both IOS and impedance characterization of neuron cells under OGD condition have been demonstrated in this study. Our simple optical setup could provide additional phase shift information originating from changes in intrinsic optical properties of intracellular fluids and various subcellular components which is beyond only the cellular morphological changes.

    中文摘要 ....................................................................................................... i Abstract ........................................................................................................ ii 致謝 ............................................................................................................ iii Content ........................................................................................................ iv List of Tables ................................................................................................ vi List of Figures ............................................................................................. vii Chapter 1 Introduction ............................................................................. 1 1.1 Introduction to stroke ........................................................................................... 1 1.2 Optical approach on neuroscience ........................................................................ 3 1.2.1 Optical window and optical properties in tissue ......................................... 5 1.2.2 Approaches to measure intrinsic optical signals ......................................... 6 1.2.3 Relationship between neuronal activity and intrinsic optical signals ......... 9 1.3 Tissue impedance measurement using MEA ...................................................... 13 1.4 Motivations and the aims of this study ............................................................... 14 Chapter 2 Materials and Methods ........................................................ 16 2.1 Research framework ........................................................................................... 16 2.2 Recording of the intrinsic optical signal ............................................................. 16 2.3 Impedance recording and MEA system .............................................................. 21 2.4 Validation experiment ......................................................................................... 22 2.4.1 Experimental setup for recording optical signals ...................................... 23 2.4.2 Determination of optimal measuring distance .......................................... 24 2.4.3 Relationship between cellular volume and scattering light under osmotic challenges .................................................................................................. 25 2.5 IOS and impedance measurements under OGD condition ................................. 25 2.5.1 Preparation of cell lines for OGD experiment .......................................... 25 2.5.2 Oxygen/glucose deprivation environment ................................................ 26 2.5.3 Measurement of impedance and optical backscattering signal during OGD experiment ................................................................................................. 27 Chapter 3 Results .................................................................................... 29 3.1 IOS measurement system performance test ....................................................... 29 3.1.1 Circulator probe ........................................................................................ 29 3.1.2 Scattering properties with optical circulator in different depths ............... 30 3.1.3 Light scattering responses on culturing cells in different osmotic media . 34 3.1.4 Relationship between backscattering outputs and cell volume ................. 40 3.1.5 Measurement of impedance and IOS change from PC12 ......................... 44 3.2 Measurement of impedance and optical signal during OGD ............................. 45 3.2.1 In vitro impedance measurement of neuron growth on MEA .................. 45 3.2.2 Impedance and optical measurement of untreated PC12 during OGD ..... 46 3.2.3 Impedance and optical measurement of treated PC12 during OGD ......... 46 Chapter 4 Discussion and Conclusions ................................................. 49 References ................................................................................................ 51

    1. Texas Heart Institute , http://www.tmc.edu/
    2. L. M. Buia and G. R. F, Krueger, Netter’s Illustrated Human Pathology, Saunders, 2004.
    3. A.S. Obeidat, C.R. Jarvis and R.D. Andrew, “Glutamate does not mediate acute neuronal damage after spreading depression induced by O2/glucose deprivation in the hippocampal slice,” J. Cereb. Blood Flow Metab., 20: 412-422, 2000.
    4. UCLA, Carmichael Laboratory, http://www.carmichaellab.neurology.ucla.edu/strokemodel.htm
    5. T. Vo-Dinh, B.R. Masters, “Biomedical Photonics Handbook,” J. Biomed. Opt., 9: 1110, 2003.
    6. M. Izzetoglu, K. Izzetoglu, S. Bunce and H. Ayaz etc., “Functional near-infrared neuroimaging,” IEEE Trans. Neural Syst. Rehabil. Eng., 13: 153-159, 2005.
    7. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci., 20: 435-442, 1997.
    8. S.C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral and K. Pourrezaei, “Functional near-infrared spectroscopy: an emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag., 25: 54-62, 2006.
    9. A.H. Hielscher, A.Y. Bluestone, G.S. Abdoulaev, A.D. Klose, J. Lasker, M. Stewart, U. Netz and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers, 18: 313-337, 2002.
    10. G. Strangman, D.A. Boas and J.P. Sutton, ”Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry, 52: 679-693, 2002.
    11. H. Obrig and A. Villringer, “Beyond the visible – imaging the human brain with light,” J. Cereb. Blood Flow Metab., 23:1-18, 2003.
    12. G. Morren, M. Wolf, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Medical and Biological Engineering and Computing, 42: 92-99, 2004.
    13. M. Wolf, U. Wolf, J.H. Choi, V. Toronov, L.A. Paunescu, A. Michalos, E. Gratton, “Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain nearinfrared spectrophotometry,” Psychophysiology, 40: 521-528, 2003.
    14. J.J. Sable, D.M. Rector, G. Gratton, “Optical neurophysiology based on animal models,” IEEE Eng. Med. Biol. Mag., 26: 17-24, 2007.
    15. B. Chance, M. Cope, E. Gratton, N. Ramanujam and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum., 69: 3457-3481, 1998.
    16. M. Izzetoglu, S. Bunce, K. Izzetoglu, B. Onaral and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag., 26: 38-46, 2007.
    17. H. Liu, H. Radhakrishnan, A.K. Senapati and C.E Hagains etc., “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage, 40: 217-227, 2008.
    18. K. Izzetoglu, G. Yurtsever, A. Bozkurt, B. Yazici, S. Bunce, K. Pourrezaei and B. Onaral, “NIR spectroscopy measurements of cognitive load elicited by CKT and target categorization,” Proc. 36th Hawaii Int. Conf. Syst. Sci., 129-134, 2003.
    19. K. Izzetoglu, S. Bunce, B. Onaral, K. Pourrezaei and B. Chance, “Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks,” Int. J. Hum.-Comput. Interact., 17: 211-227, 2004.
    20. E. Gratton, V. Toronov, U. Wolf, M. Wolf and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt., 10: 011008, 2005.
    21. S.P. Srinivas, J.A. Bonanno, E. Larivière, D. Jans and W.V. Driessche, “Measurement of rapid changes in cell volume by forward light scattering,” Pflugers Arch. Eur. J. Phy., 447: 97-108, 2003.
    22. P.G. Aitken, D. Fayuk, G.G. Somjen and D.A. Turner, “Use of intrinsic optical signals to monitor physiological changes in brain tissue slices,” Methods, 18:91-103, 1999.
    23. M. Haller, S.L. Mironov and D.W. Richter, “Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress,” J. Neurophysiol., 86:412-421, 2001.
    24. R.D. Andrew, C.R. Jarvis, and A.S. Obeidat, “Potential sources of intrinsic optical signals imaged in live brain slices,” Methods, 18: 185-196, 1999.
    25. J. Davidson and J. Lipski, “Factors contributing to cell swelling in an in vitro model of stroke,” Oculus U-21 Edition, 48-55, 2005.
    26. O.W. Witte, H. Niermann and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc., 73: 337-350, 2001.
    27. L. Tao, “Light scattering in brain slices measured with a photon counting fiber optic system,” J. Neurosci. Methods, 101: 19-29, 2000.
    28. L. Tao, D. Masri, S.H. tova and C. Nicholson, “Light scattering in rat neocortical slices differs during spreading depression and ischemia,” Brain Res., 952: 290-300, 2002.
    29. M. Echevarria and A.S. Verkman, “Optical measurement of osmotic water transport in cultured cells,” J. Gen. Physiol., 99: 573-589, 1992.
    30. D. Watson, N. Hagen and J. Diver, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J., 87: 1298-1306, 2004.
    31. M. Müller and G.G. Somjen, “Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression-like depolarization,” J. Neurophysiol., 82: 1818-1831, 1999.
    32. D. Fayuk, P.G. Aitken, G.G. Somjen and D.A. Turner, “Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices,” J. Neurophysiol., 87: 1924-1937, 2002.
    33. S. Antic, G. Major, D. Zecevic and D. Zecevic, “Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons,” J. Neurophysiol., 82: 1615-1621, 1999.
    34. J.R. Buitenweg, W.L.C. Rutten, E. Marani, S.K.L. Polman and J. Ursum, “Extracellular detection of active membrane currents in the neuron-electrode interface,” J. Neurosci. Methods, 115: 211-221, 2002
    35. R. Tabakman, H. Jiang, I. Shahar, H.H. Arien-Zakay, R.A. Levine and P. Lazarovici, “Neuroprotection by NGF in the PC12 in vitro OGD model: involvement of Mitogen-activated protein kinases and gene expression,” Ann. NY Acad.Sci., 1053: 84-96, 2005.

    下載圖示 校內:2010-08-03公開
    校外:2010-08-03公開
    QR CODE