簡易檢索 / 詳目顯示

研究生: 王冠華
Wang, Kuan-Hua
論文名稱: 鹼基(黃嘌呤、胸線嘧啶、次黃嘌呤及胞嘧啶)配對物內相對氫鍵強度與芳香性的理論研究
Theoretical Studies of Relative H-Bonding Strengths and Aromatic Character in Pairing of Nucleobases (Nucleobases = Xanthine, Thymine, Hypoxanthine and Cytosine)
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 79
中文關鍵詞: 芳香性氫鍵
外文關鍵詞: aromaticity, hydrogen bond
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞受到氧化破壞後,DNA (deoxyribonucleic acid) 鹼基中的鳥糞嘌呤 (guanine) 及腺嘌呤 (adenine) 會分別形成黃嘌呤 (xanthine) 與次黃嘌呤 (hypoxanthine),與正常鹼基配對之後會導致點突變。鹼基對的分子間氫鍵會影響整個核酸的結構和穩定,因此本文利用密度泛涵理論計算 (DFT) 研究黃嘌呤二聚物 (XX) 、胸線嘧啶二聚物(TT) 和兩者的配對錯合物 (XT) 之能量與芳香性,並進一步分析次黃嘌呤與正常鹼基的配對情形 (HT、TC) 作為比對。
    藉由各種鹼基之氫鍵錯合物的天然鍵結軌域 (NBO) 分析結果,我們發現氫鍵若由相同原子所形成,則分子間的距離、E(2) 値和 Δs% 可以有效的判斷氫鍵的強弱及錯合物的穩定性,其中E(2) 値更包含了二級靜電效應的影響。
    除此之外,本研究引進芳香性的簡諧振動模型 (Harmonic Oscillator Model of Aromaticity,HOMA) 以及核獨立化學位移 (Nucleus Independent Chemical Shifts,NICS) 方法分析錯合物的芳香性,證實外環雙鍵取代基會減弱分子的芳香性。鹼基使用羰基配對後,氫鍵的干擾使得鹼基分子的環上芳香性特徵受到改變,增加作用環的電子極化能力,若此羰基位在環的主要貢獻區域上,則整體的芳香性會增加較多。

    The noncanonical nucleobases xanthine and hypoxanthine are important lesions that are formed from the canonical bases guanine and adenine by nitrogen loss when a cell is under oxidative stress. It is known that they lead to point mutations. Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. Our purpose is to understand the interaction between nucleotide bases. We have studied numerous model systems for dimers and mismatched pairs involving xanthine (X), thymine (T), hypoxanthine (H), and cytosine (C) at density functional theory (DFT).
    The wavefunctions were analyzed by the Natural Bond Orbitals (NBO). If those two-dentate pairing modes were formed by the same functional groups, we can use E(2) (the second order perturbation energy), Δs% (the change of s-orbital contents) and the average intermolecular distances to describe the H-bonding strengths and stability of complexes. Among which, E(2) may show great correlation with secondary electrostatic interactions.
    Furthermore, aromaticity of the ring of four compounds and their complexes was analyzed by the aromaticity index HOMA (Harmonic Oscillator Model of Aromacity) and NICS (Nucleus Independent Chemical Shifts). Aromaticity of the bases decreases with an increase of the number of double-bond substituents at the rings. Even if hydrogen bonding is much weaker perturbation than the substituent effect, H-bonds involving C=O groups in mismatched pairs may cause an increase of the aromatic character of the rings, but the increasing value is not identical in the pairs which build of the same compound, such as six thymine dimers. It is regard as whether H-bonds contribute to increasing the ring resonance.

    摘要.............................................................................................................I Abstract.....................................................................................................Ⅱ 誌謝..........................................................................................................III 目錄..........................................................................................................IV 表目錄......................................................................................................VI 圖目錄.....................................................................................................VII 第一章 緒論..............................................................................................1 第二章 理論背景......................................................................................4 2-1 氫鍵.....................................................................................................4 2-1-1 超共軛...........................................................................................7 2-1-2 判斷氫鍵.......................................................................................8 2-1-3 二級靜電作用.............................................................................10 2-2 π 電子系統.....................................................................................12 2-2-1 共振.............................................................................................12 2-2-2 芳香性.........................................................................................13 2-2-3 共軛氫鍵.....................................................................................13 2-2-4 分子間氫鍵與芳香性.................................................................15 第三章 計算原理與方法........................................................................18 3-1 計算原理...........................................................................................18 3-1-1 HF 理論方法..............................................................................18 3-1-2 DFT 理論方法............................................................................19 3-1-3 基底.............................................................................................21 3-1-4 分裂基底.....................................................................................22 3-1-5 極化函數.....................................................................................23 3-1-6 擴散函數.................................................................................... 23 3-1-7 限定自洽場與非限定自洽場.....................................................24 3-1-8 天然鍵性軌域 (NBO) ...............................................................25 3-1-9 HOMA.......................................................................................28 3-1-10 NICS..........................................................................................29 3-2 計算方法..........................................................................................31 3-2-1 選用軟體.....................................................................................31 3-2-2 計算條件.....................................................................................31 3-2-3 計算流程.....................................................................................32 3-2-4 計算指令.....................................................................................33 3-2-5 選用基底.....................................................................................33 3-2-6 HOMA 的計算...........................................................................33 3-2-7 NICS 的計算..............................................................................34 第四章 結果與討論................................................................................35 4-1 穩定能分析.......................................................................................35 4-1-1 XX、TT與XX氫鍵錯合物..........................................................35 4-1-2 其他氫鍵錯合物的比較.............................................................49 4-1-3 相關表格.....................................................................................52 4-2 π 電子系統的極化作用................................................................56 4-2-1 芳香性的差異.............................................................................56 4-2-2 芳香性與穩定能的關係.............................................................57 4-2-3 氫鍵對芳香性的影響.................................................................59 4-2-4 相關表格.....................................................................................69 第五章 結論..........................................................................................73 參考文獻..................................................................................................74

    1. Kow, Y. W. Free Radical Biol. Med. 2002, 33, 886-893.
    2. (a) Shapiro, R.; Pohl, S. H. Biochemistry 1968, 7, 448–455; (b) Shapiro, R.; Shiuey, S. J. Biochim. Biophys. Acta. 1969, 174, 403–405.
    3. Caulfeld, J. L.; Wishnok, J. S.; Tannenbaum, S. R. J. Biol. Chem. 1998, 273, 12689-12695.
    4. (a) Spence, J. P.; Jenner, J.; Chimel, K.; Aruoma, O. I.; Cross, C. E.; Wu R.; Halliwell, B. FEBS Lett. 1995, 375, 179–182.; (b) Spence, J. P.; Wong, J.; Jenner, J.; Aruoma, O. I.; Cross, C. E.; Halliwell, B. Chem. Res. Toxicol. 1996, 9, 1152–1158.
    5. Toyokuni, T. M.; Dizdaroglu, M. Int. J. Cancer 1994, 57, 123–128.
    6. (a) Wuenschell, G. E.; O'Connor, T. R.; Termini, J. Biochemistry 2003, 42, 3608-3616; (b) Stoychev, G.; Kierdaszuk, B.; Shugar, D. Eur. J. Biochem. 2002, 269, 4048-4057; (c) Kreutzer, D. A.; Essigmann, J. M. Oxidized, Proc. Natl. Acad. Sci. USA 1998 , 95, 3578–3582; (d) Purmal, A. A.; Kow, Y. W.; Wallace, S. S. Nucleic Acids Res. 1994, 22, 3930–3935; (e) Flix, D. F.; Glickman, B. W. Mol. Gen. Genet. 1987, 209, 78–82.
    7. Fearon, E. R.; Vogelstein, B. Cell 1990, 61, 759-767.
    8. Weinberg, R.A. Oncogenes and the Molecular Origins of Cancer, Cold Spring Harbor Press, New York, 1989.
    9. (a) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991; (b) Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997,Chapter 10; (c) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738; (d) Saenger, W. Principles of Nucleic Acid Structure, Springer, New York, 1984; (e) Stryer, L. Biochemistry; Freeman: New York, 1988.
    10. (a) Lewis, J.; Sankey, P. O. F. Biophys. J. 1995, 69, 1068-1076; (b) Kong, Y. S.; Jhon, Löwdin, M. S. P. O. Int. J. Quantum. Chem. Symp. QB 1987, 14, 189; (c) C. Nagata, M. Aida, J. Mol. Struct.(Theochem) 1988, 179, 451-466; (d) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493-2499; (e) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965-1974; (f) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996, 14, 117; (g) Sponer, J.; Hobza, P.; Leszczynski, J. in Computational Chemistry. Reviews of Current Trends (Ed.: Leszczynski, J.), World Scientific Publisher, Singapore, 1996, p.185 - 218; (h) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574-7577; (i) Brameld, K.; Dasgupta, S.; Goddard III, W. A. J. Phys. Chem. B 1997, 101, 4851-4859; (j) Meyer, M.; Sühnel, J. J. Biomol. Struct. Dyn. 1997, 15, 619; (k) Santamaria, R.; Vázquez, A. J. Comp. Chem. 1994, 15, 981-996; (l) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159-8167.
    11. (a) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391-4400; (b) Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. in Theoretical Treatment of Hydrogen Bonding (Ed.: D. Hadzi), Wiley,New York, 1997; (c) Sirois, S.; Proynov, E. I.; Nguyen, D. T.; Salahub, D. R. J. Chem. Phys. 1997, 107, 6770-6781; (d) Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. 1998, 102, 3782-3797; (e) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089-10094;(f) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837-15845; (g) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793-9799; (h) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705-10707; (i) Florian, J.; Johnson, B. G. J. Phys. Chem. 1995, 99, 5899-5908; (j) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1995, 99, 2717; (l) Lozynski, M.; Rusinska-Roszak, D.; Mack, H. G. J. Phys. Chem. 1998, 102, 2899-2903; (m) Chandra, A. K.; Nguyen, M. Chem. Phys. 1998, 232, 299-306; (n) Paizs, B.; Suhai, S. J. Comp. Chem. 1998, 19, 575-584; (o) McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 39-53; (p) Pan, Y. P.; McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 221-227; (k) Civalleri, B.; Garrone, E.; Ugliengo, P. J. Mol. Struc. (Theochem) 1997, 419, 227-238; (q) Gonzalez, L.; Mo, O.; Yanez, M. J. Comp. Chem. 1997, 18, 1124-1135.
    12. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 1999, 111, 3120-3122; Angew. Chem. Int. Ed. 1999, 38, 2942-2945.
    13. (a) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1977, 99, 1316-1332; (b) Yamabe, S.; Morokuma, K. J. Am. Chem. Soc. 1975, 97, 4458-4465; (c) Morokuma, K. Acc. Chem. Res. 1977, 10, 294-300.
    14. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073.
    15. Hamilton, W. C.; Ibers, J. A. Hydrogrn Bonding in Solids, Benjamin, New York, 1968.
    16. Harris, S. J.; Janda, K.C.; Novick, S. E.; Klemperer, W. J. Chem. Phys. 1975, 63, 881-884.
    17. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581-3594.
    18. Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248-255.
    19. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194-2197; Angew. Chem. Int. Ed. 2002, 41, 2092-2095.
    20. Fonseca Guerra, C.; Baerends, E. J.; Bickelhaupt, F. M. Crystal Growth & Design 2002, 2, 239-245.
    21. Mulliken, R. S. J. Phys. Chem., 1933, 1, 492-503; 1935, 3, 517-528; 1937, 7, 339-352.
    22. Schleyer, P. v. R.; Kos, A. J. Tetrahedron, 1983, 39, 1141-1150.
    23. (a) Wheland, G. W. J. Chem. Phys. 1934, 2, 474-481; (b) Cramer, C. J. In Encyclopedia of Computational Chemistry; Schelyer, P. v. R., Ed.; John Wiley & Sons: Berlin, 1998; p.1294.
    24. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
    25. (a) Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592-2599; (b) Pauling, L. C. The Nature of the Chemical Bond; 3rd ed.; Cornell University Press: Ithaca, NY, 1960; (c) Hoyland, J. R. J. Am. Chem. Soc. 1968, 90, 2227-2232.
    26. (a) Goodman, L.; Gu, H. J. Chem. Phys. 1998, 109, 72-78; (b) Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993; (c) Goodman, L.; Gu, H.; Pophristic, V. J. Chem. Phys. 1999, 110, 4268-4275; (d) Pophristic, V.; Goodman, L. Nature 2001, 411, 565-568.
    27. Allerhand, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 1963, 85, 1715-1723.
    28. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b)Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566. (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.
    29. (a) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
    30. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973-5987.
    31. (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253-4264; (b) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10607-10612; (c) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784-1789.
    32. (a) Bent, H. A. Chem. Rev. 1961, 61, 275-311; (b) Lemke, F. R.; Galat, K. J. Youngs, W. J. Organometallics 1999, 18, 1419-1429; (c) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648-3659; (d) Palmer, M. H. J. Mol. Struct. 1997, 405, 179-191; (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 193-205; (f) Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem. 1996, 35, 2097-2099; (g) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201-4209; (h) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061-1073; (i) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981-1988; (j) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 234, 247-267; (k) Kaupp, M. Chem. Eur. J. 1999, 5, 3631-3643.
    33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al., GAUSSIAN 98, Gaussian, Inc., ittsburgh, PA, 1998.
    34. (a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008-2010; (b) Pranata, J.; Wierschke, S. G.; Jorgensen W. L. J. Am. Chem. Soc. 1991, 113, 2810-2819; (c) Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1991, 113, 209-216.
    35. (a) Lukin, O.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 6775; (b) Lukin, O.; Leszczynski, J. J. Phys. Chem. A 2003, 107, 9251-9252.
    36. (a) Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023-1028; (b) Gilli, P.; Ferretti, V.; Bertolasi, V.; Gilli, G. Adv. Mol. Struct. Res. 1996, 2, 67-102; (c) Gilli, G.; Bertolasi, V.; Ferretti, V.; Gilli, P. Acta Crystallogr. Sect. B 1993, 49, 564; (d) Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Acta Crystallogr. Sect. B 1995, 51, 1004.
    37. Jones, M. Organic Chemistry, 2nd ed.; W. W. Norton Company Inc.: New York, 2000.
    38. Schleyer, P. v. R. Chem. Rev. 2001; 101, 1115–1118.
    39. Pauling, L. The Nature of the Chemical Bond and Structure of Molecules in Crystals; Cornell University Press: Ithaca, 1960; pp 188ff.
    40. (a) Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 1333-1338; (b) Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. Tetrahedron 2003, 59, 1657-1665; (c) Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 3839-3842; (d) Bird, C. W. Tetrahedron 1985, 41, 1409-1414; (e) Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70-78; (f) Julg, A.; Francüoise, Ph. Theor. Chim. Acta 1967, 8, 249-259.
    41. (a) Flygare, W. H. Chem. Rev. 1974, 74, 653-687; (b) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811-813; (c) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991-1998; (d) Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Non- Benzenoid Aromatic Compounds; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2; (e) Lazzeretti, P. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 1-88.
    42. (a) Hellmann H. Einfurung in die Quantenchemie. Franz Deuticke: Leipzig, 1937; (b) Feynman RP. Phys. Rev. 1939; 56, 340–343.
    43. (a) Krygowski, T.M.; Cyranski, M.K.; Czarnocki, Z, Hafelinger, G.; Katritzky, A.R. Tetrahedron 2000, 56, 1783–1796; (b) Krygowski T.M.; Cyranski M.K; Chem. Rev. 2001, 101, 1385–1420.
    44. (a) Krygowski, T. M.; Anulewicz, R.; Jagodzinski, T. Pol. J. Chem. 1998, 72, 439–448; (b) Krygowski, T. M.; Stepien, B.; Anulewicz-Ostrowska, R.; Dziembowska, T. Tetrahedron 1999, 55, 5457–5464.
    45. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317-6318.
    46. (a) Srinivasan, R.; Feenstra, J.S.; Park, S.T.; Xu, S.; Zewail, A.H. J. Am. Chem. Soc. 2004, 126, 2266–2267; (b) Grabowski, S.J. Monatsh. Chem. 2002, 133, 1373–1380; (c) Grabowski, S.J. J. Phys. Org. Chem. 2003, 16, 797–802; (d) Alkorta, I.; Elguero, J.; Mo, M.; Yanez, M.; Del Bene, J. E. Mol. Phys. 2004; 102, 2563–2574.
    47. (a) Krygowski T.M.; Wozniak, K.; Anulewicz, R.; Pawlak, D.; Kolodziejski, W.; Grech, E.; Szady, A.; J. Phys. Chem. A 1997, 101, 9399–9404; (b) Filarowski, A. J. Phys. Org. Chem. 2005, 18, 686–698.
    48. Huggins, M. L. Angew. Chem. 1971, 83, 163-168; Angew. Chem. Int. Ed. Engl. 1971, 10, 147-152.
    49. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581.
    50. Cyranski, M. K.; Gilski, M.; Jaskolski M.; Krygowski, M. K. J. Org. Chem. 2003, 68, 8607-8613.
    51. Krygowski, T. M.; Szatylowicz, H. Pol. J. Chem. 2004, 78, 1719-1731.
    52. Krygowski, T. M.; Szatylowicz, H.; Zachara, J. E. J. Chem. Inf. Comput. Sci. 2004, 44, 2077-2082.
    53. Cyranski, M. K.; Krygowski, T. M.; Wisiorowski, M.; Hommes, N. J. R. v. E.; Schleyer, P. v. R. Angew. Chem. Int. Ed. Engl. 1998, 37, 177-180.
    54. Krygowski, T. M.; Anulewicz, R.; Cyranski, M. K.; Puchala, A.; Rasala, D. Tetrahedron 1998, 54, 12295-12300.
    55. Krygowski, T. M.; Szatyłowicz, H.; Zachara J. E. J. Org. Chem. 2005, 70, 8859-8865.
    56. (a) Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142-6148; (b) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
    57. Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852-4856.
    58. Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).
    59. (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871; (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138; (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) ; (d) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    60. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (b) Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.
    61. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789.
    62. (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206; (b) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct.(Theochem) 2000, 507, 153-156; (c) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. (Theochem) 2001, 543, 285-297; (d) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004-11009; (e) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070-7073; (f) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687-5705; (g) Weinhold, F. J. Mol. Struct.(Theochem) 1997, 398, 181-197; (h) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320-7327; (i) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286-6292; (j) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49-57; (k) Wilkens, S. J.; Weatler, W. M.; Weinhold, F.; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190-1191.
    63. Shaik, S.S.; Hiberty, P. C.; Lefour, J. M.; Ohanessian, G. J. Am. Chem. Soc. 1987, 109, 363-374.
    64. Rogstad, K. N.; Jang, Y. H.; Sowers, L. C.; Goddard, W. A., III Chem. Res. Toxicol. 2003, 16, 1455-1462.
    65. Hupp, T.; Sturm, C.; Janke, E. M. B.; Cabre, M. P.; Weisz, K.; Engels, B. J. Phys. Chem. A 2005, 109, 1703-1712.
    66. (a) Beak, P.; Bonham, J.; Lee, J. T., Jr. J. Am. Chem. Soc. 1968, 90, 1569-1582. (b) Beak, P.; Lee, J. T., Jr. J. Org. Chem. 1969, 34, 2125-2128; (c) Krygowski, T. M.; Anulewicz, R.; Cyranski, M. K.; Puchała, A.; Rasała, D. Tetrahedron 1998, 54, 12295-12300.
    67. Guell, M.; Poater J.; Luis, J. M.; Mo,O.; Yanez, M.; Sola, M. ChemPhysChem 2005, 6, 2552-2561.

    下載圖示 校內:2017-07-02公開
    校外:2017-07-02公開
    QR CODE