簡易檢索 / 詳目顯示

研究生: 黃國瑋
Hunag, Guo-Wei
論文名稱: CuO對銻摻雜氧化錫之燒結緻密化與導電性質影響
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 71
中文關鍵詞: 導電性緻密化燒結氧化錫
外文關鍵詞: densification, tin oxide, conductivity, sintering
相關次數: 點閱:72下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   SnO2所具有表面擴散與高溫蒸發凝結的特性導致其燒結緻密化困難。對SnO2:Sb2O3、SnO2:CuO與SnO2:Sb2O3:CuO三種系列成分在1300℃燒結之實驗發現,Sb2O3的摻雜對SnO2導電性質的提升可有顯著的效果。在SnO2:Sb2O3系列中,2 mol % Sb2O3的摻雜可降低SnO2室溫電阻率約6個數量級之多,達1.21×10-2 Ω-cm,然而卻會造成燒結緻密化的更加惡化,此系列試片之相對密度僅為55~57%左右。另一方面,以CuO作為助燒結劑,只需少量(0.5 mol %)便能達成96%相對密度以上的高緻密化效果,但電阻率量測結果顯示對SnO2導電性質有負面影響,其室溫電阻率升高約2~3個數量級。
      實驗結果顯示Sb-Cu-O系統在高溫下的反應中, =1~2之試片仍可達92%以上之相對密度,顯示在900℃時Sb2O3與CuO之間形成CuSb2O6的反應並不致於耗盡成分中的CuO。
      兼具高度緻密化與良好導電性的試片可在2 mol% Sb2O3-2 mol% CuO之添加比例得到,其相對密度為94.8%,而室溫電阻率為2.54×10-2 Ω-cm。結果顯示Sb2O3對燒結緻密性與CuO對導電性質的負面效應,可以藉由兩者的適當比例添加達到相互補償的效果。亦即,在SnO2中添加Sb2O3與CuO,可在達到高緻密度的情況之下,仍保留良好的導電性質。

      The poor sintering capacity of SnO2 is characterized as the non-densifying mechanisms such as surface diffusion and evaporaton-
    condensation. Samples of SnO2:Sb2O3, SnO2:CuO and SnO2:Sb2O3: CuO composition systems were investigated as sintered at 1300℃ for 2 hours, the results show that doping with Sb2O3 can effectively decrease the room-temperature resistivity of SnO2 by about 6 orders of magnitude. In the SnO2:Sb2O3 system, specimen doped with 2 mol% Sb2O3 shows the lowest resistivity of 1.21×10-2 Ω-cm. However, the dopant is found to further deteriorate densification of SnO2, which all samples of this system show a low relative density ranged from 55 to 57%.
      It is found that CuO can largely promote the densification of SnO2 during sintering. Adding a small amount (0.5 mol% ) of CuO can raise the relative density of samples up to more than 96%. However, the measured values of resistivity indicate that the effect caused by CuO on conductivity is negative.
      In the SnO2:Sb2O3:CuO composition system it is found that the samples of =1~2 in present study still show high values of relative density over 92% after sintering. This result suggests that the formation reaction of CuSb2O6 occurs at about 900℃may not completely consume CuO in specimens.
      Finally, materials combined high density and good electrical conductivity are obtained by jointly adding Sb2O3 and CuO to SnO2. The lowest room-temperature resistivity of 2.54×10-2 Ω-cm as measured in specimen containing 2 mol% Sb2O3 and 2 mol% CuO is effectively densified to 94.8% relative density. The negative effects on densification due to addition of Sb2O3 and on conductivity caused by CuO seems can be compensated by jointly adding both of them.

    中文摘要...................I 英文摘要...................II 總目錄....................IV 圖目錄....................VI 表目錄....................X 第一章、緒論.................1 1-1前言................... 1 1-2實驗動機與目的.............. 2 第二章、理論及文獻回顧............4 2-1燒結的原理與機制............. 4  2-1-1液相燒結............... 4 2-2氧化錫的基本性質............. 7  2-2-1氧化錫的晶體結構........... 7  2-2-2氧化錫之燒結特性........... 9 第三章、實驗步驟與方法............12 3-1粉末與試片製備.............. 12 3-2密度量測................. 15 3-3X光繞射觀察................15 3-4SEM顯微結構察...............16 3-5電阻率量測................ 16 第四章、結果與討論..............19 4-1添加Sb2O3對SnO2緻密化與導電性質之影響...21  4-1-1添加Sb2O3對SnO2燒結緻密化的影響....24  4-1-2添加Sb2O3對SnO2導電性質的影響.....27 4-2添加CuO對SnO2緻密化與導電性質之影響...33  4-2-1添加CuO對SnO2燒結緻密化的影響.....35  4-2-2Cu-O液相的形成與表面析出相的觀測...35  4-2-3添加CuO對SnO2固態燒結的影響......44  4-2-4添加CuO對SnO2導電性質的影響......46 4-3添加Sb2O3與CuO對緻密化與導電性質之影響.. 47  4-3-1添加Sb2O3與CuO對燒結緻密化之影響... 50  4-3-2燒結時間與緻密化之關係........ 54  4-3-3燒結時間與晶粒成長之關係....... 57  4-3-4表面析出相的變化與Cu-Sb-O相反應....60  4-3-5添加Sb2O3與CuO對SnO2導電性質之影響.. 62 第五章、結論.................67 參考文獻...................69 致謝.....................72

    1.D. Nisiro, G Fabbri, G.C. Celotti, A. Bellosi, Influence of the additives
     and processing conditions on the characteristics of dense SnO2-based  
     ceramics, J. Mater. Sci., 38(2003) 2727
    2.J.A. Varela, L.A. Perazolli, J.A. Cerri, E.R. Leite, E. Longo, Sintering of
     tin oxide and its applications in electronics and processing of high purity
     optical glasses, Ceramica, 47(2001) 302
    3.S.J. Park, K. Hirota, H. Yamamura, Densification of non-additive SnO2 by hot  isostatic pressing, Ceram. Int., 10(1984) 115
    4.E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, C.A. Paskocima, Sintering of  ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc., 21(2001) 669
    5.W.C. Las, N. Dolet, P. Dordor,J.P. Bonnet, Influence of additives on the  
     electrical properties of dense SnO2-based ceramics, J. Appl. Phys., 74[10]
     (1993) 6191
    6.I.O. Mazali, W.C. Las, M. Cilense, The effect of preparation method and Sb  
     content on SnO2-CuO sintering, J. Mater. Sci., 38(2003) 3325
    7.M. Zaharescu, S. Mihaiu, S. Zuca, K. Matiasovsky, Contribution to the study
     of SnO2-based ceramics Part. I High-temperature interactions of tin(IV)
     oxide with antimony(III) oxide and copper(II) oxide, J. Mater. Sci., 26
     (1991) 1666
    8.C.M. Wang, J.F. Wang, H.C. Chen, W.B. Su, G.Z. Zang, P. Qi, M.L. Zhao,
     Effects of CuO on the grain size and electrical properties of SnO2-based
     varistors, Mater. Sci. Eng. B, 116(2005) 54
    9.O. Scalat, S. Mihaiu, Gh. Aldica, M. Zaharescu, J. Groza, Enhanced
     Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering, J.
     Am. Ceram. Soc., 86[6](2003) 893
    10.S. Mihaiu, O. Scalat, Gh. Aldica, M. Zaharescu, SnO2 electro- ceramics with
     various additives, J. Eur. Ceram. Soc., 21(2001) 1801
    11.M.R. Cassia-Santos, V.C. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar,
     J.W. Gomes, E. Longo, E.R. Leite, J.A. Varela, Recent research developments
     in SnO2-based varistors, Mater. Chem. Phys., 90(2005) 1
    12.O. Scalat, M. Mihaiu, M. Zaharescu, J. Eur. Ceram. Soc., Subsolidus phase
     relations in the SnO2-CuSb2O6 binary system, 22(2002) 1839
    13.汪建民, 液相燒結理論及應用, in 粉末冶金, 汪建民、朱秋龍等著,中華民國粉末冶金
     協會 (1991)第8章 165-178
    14.W.D. Kingery, B. Francois, Sintering of crystalline oxides. I. Interactions
     between grain boundaries and pores, in Sintering and Related Phenomena, ed.
     G.C. Kuczynski, N.A. Hooton, C.F. Gibbon, Gordon & Breach, (1967) 471-498
    15.余樹楨, 晶體內部原子排列-晶體結構, in 晶體之結構與性質, 余樹楨著, 渤海堂,
     (1987)第十二章281-284
    16.J.A. Varela, E. Longo, N. Barelli, A.S. Tanaka, W.A. Mariano, Ceramica, 31
     (1985) 241
    17.C.L. Hoenig, A.W. Searcy, Knudsen and Langmuir evaporation studies of
     stannic oxide, J. Am. Ceram. Soc., 49(1966) 128
    18.J. Lalande, R.O. Fichet, P. Boch, Sintering behaviour of CuO-doped SnO2, J.
     Eur. Ceram. Soc., 20(2000) 2415
    19.T. Kikuchi, M. Umehara, Relation between antimony content and lattice
     parameters of Sb-Sn oxide, J. Mater. Sci. Lett., 4(1985) 1051
    20.C. Terrier, J.P. Chatelon, R. Berjoan, J.A. Roger, Sb-doped SnO2
     transparent conducting oxide from the sol-gel dip-coating technique, Thin
     Solid Films, 263(1995) 37
    21.F.J. Berry, Tin-antimony oxide oxidation catalysts, Hyperfine Interactions,
     111(1998) 35
    22.C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, III.
     Appendix, in Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer
     Corporation(1978) 185
    23.E. Levin, C.R. Robbins, H.F. McMurdie, Phase Diagrams for Ceramists Vol.II,
     American Ceramic Society Inc. (1964) Fig.2069
    24.A.M.M. Gadalla, W.F. Ford, J. White, Equilibrium Relationships in the
     System CuO-Cu2O-SiO2, Trans. Br. Ceram. Soc., 62(1963) 57
    25.J.P. Bonnet, N. Dolet, J.M. Heintz, Low-Temperature Sintering of 0.99SnO2-
     0.01CuO: Influence of Copper Surface Diffusion, J. Eur. Ceram. Soc., 16
     (1996) 1163
    26.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics 2nd
     Edition, Wiley-Interscience (1976)Chap.10 446-475, Chap.11 489-495
    27.D. Lynn Johnson, A General Model for the Intermediate Stage of Sintering,
     J. Am. Ceram. Soc., 53[10](1970) 574

    下載圖示 校內:2007-07-28公開
    校外:2008-07-28公開
    QR CODE