| 研究生: |
王承凱 Wang, Chen-Kai |
|---|---|
| 論文名稱: |
研究hRad9蛋白在乳癌細胞中促進細胞老化與調控EMT上的功能性角色 Study on the functional role of hRad9 protein in promoting senescence and modulating epithelial-mesenchymal transition in breast cancer |
| 指導教授: |
張敏政
Chang, Ming C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 細胞老化 、hRad9 、上皮-間質轉化 |
| 外文關鍵詞: | senescence, hRad9, EMT |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Rad9 蛋白質最早是在Schizosaccharomyces prombe 被發現,而進一步在人類身上也同樣發現Rad9的同源蛋白,hRad9,hRad9是checkpoint rad gene的其中一員,是個具有高度保存性的蛋白並且hRad9在細胞中參與了許多不同重要的生理功能。雖然有許多研究文獻報導hRad9蛋白的各種生理功能但是hRad9蛋白在人類細胞癌症中所扮演的真正角色並未明確。細胞老化被認為是細胞保護自己的反應機制之ㄧ並且會出現在較良性的腫瘤中。在之前的相關報導中,在乳癌肺癌中觀察到hRad9蛋白有累積的情形,並且hRad9蛋白被認為是個腫瘤致癌基因;然而,一些研究顯示hRad9蛋白是腫瘤抑制蛋白因為hRad9保持基因的完整度和抑制androgen receptor (AR)的活性。而為了釐清hRad9蛋白在癌症中扮演的角色所以先在MDA-MB-231 breast cancer cell lines 中建立hRad9蛋白大量表現穩定的細胞株(此細胞株已由實驗室凡志學長建立),下一步我們對於細胞型態、細胞生長速度、細胞爬行能力以及形成聚落的能力進行觀察。結果發現在hRad9大量表現的細胞株中,在細胞型態上可以發現有部分細胞呈現較肥大並有較攤平的外觀並且在細胞生長速率、細胞爬行速度及形成聚落的能力,皆有下降的趨勢。由於細胞的外觀改變並有生長速率的降低的特色和已報導的現象細胞老化( Senescence )相符,故利用其他老化相關特色,例如:Senescence associated β-galactosidase、Stress fibers actin 經由觀察後更進一步發現這類型的細胞有表現老化細胞的特徵出現,藉由這些特徵顯示大量表現hRad9蛋白會使細胞呈現老化的現象;另一方面為了更確定hRad9蛋白的角色定位,我們所取得的invasive ductal carcinoma specimens中有發現大部分檢體呈現hRad9 蛋白低量表現的情形,並且在良性與惡性不同的細胞株中,觀察到較惡性並較具侵犯性的細胞株,hRad9蛋白呈現低表現,這給了我們暗示hRad9在腫瘤惡化程度中可能扮演著重要的角色,因此我們認為hRad9蛋白的下降似乎和細胞較惡化具有一定關係存在,故我們以核酸干擾技術暫時抑制MCF-7 breast cancer cell lines hRad9的表現,從細胞外型中發現在細胞型態上產生改變並且在細胞的爬行能力有上升的表現。並且發現細胞的爬行速率也有上升的情形,進而在西方墨點法技術中,發現Epithelial marker like E-cadherin的減少和Mesenchymal markers like Vimentin的增加,然而此EMT marker的改變是否真的造成在動物model中細胞株轉移能力的增加,還需要進一步的研究探討。綜合以上結果,我們認為hRad9可能透過調控下游因子及EMT相關蛋白進而在乳癌細胞中扮演一個抑癌的角色。而更詳細的機制還必須在未來做更詳盡的探討。
The hRad9 protein is a structural homologue to Schizosaccharomyces pombe rad9 in human beings, which is a member of the Rad family of checkpoints that plays important roles in several fundamental biological processes. Cellular senescence is an anti-proliferative response considered as a tumor suppressive mechanism. Accumulation of hRad9 has been reported in breast, lung and prostate cancers, and suggest that hRad9 may act as an oncogenic protein. However, several studies also support that hRad9 might serve as a tumor suppressor due to its functions in maintaining chromosome integrity and repressing androgen receptor (AR) activity. In this study, We established stably hRad9-overexpressing cells in MDA-MB-231, 231-CR9, and determined their tumorigencity. In comparison with the mock-transfected cells, 231-PC, the morphology of 231-CR9 cell was enlarged and vacuolous. The cell growth rate of 231-CR9 was lower than that of 231-PC cells. In addition, migration abiliyty of 231-CR9 was decreased when compared to that of 231-PC cells. Several features of senescent cells including large size cell , the enrichment stress fibers , and the senescence-associated β-galactosidase (SA-β-gal) was observed in 231-CR9 , and further we knock-down hRad9 expression resulted in the reversal of cellular senescence in 231-CR9, to suggest that hRad9 was associated with cellular senescence in 231-CR9. Knock-down of hRad9 resulted in loss of cell-cell adhesion epithelial markers like E-cadherin , activation of mesenchymal markers, and induction of cell motility. To suggest that reduced hRad9 protein might contribute to metastasis by promoting an epithelial-mesenchymal transition (EMT). Put together, our data indicated that hRad9 protein was involved in regulating senescence and epithelial-mesenchymal transition in cancer cells. We will investigate the mechanisms of hRad9-mediated senescence EMT as well as confirm our hypothesis that hRad9 protein play an important role in promoting senescence and modulating epithelial-mesenchymal transition in vivo in the future.
參考文獻
Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89, 10114-10118.
Aravind, L., Dixit, V. M., and Koonin, E. V. (2001). Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279-1284.
Argyle, D., Ellsmore, V., Gault, E. A., Munro, A. F., and Nasir, L. (2003). Equine telomeres and telomerase in cellular immortalisation and ageing. Mech Ageing Dev 124, 759-764.
Bao, S., Lu, T., Wang, X., Zheng, H., Wang, L. E., Wei, Q., Hittelman, W. N., and Li, L. (2004). Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene 23, 5586-5593.
Ben-Porath, I., and Weinberg, R. A. (2004). When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113, 8-13.
Ben-Porath, I., and Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37, 961-976.
Blander, G., de Oliveira, R. M., Conboy, C. M., Haigis, M., and Guarente, L. (2003). Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 278, 38966-38969.
Blankley, R. T., and Lydall, D. (2004). A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci 117, 601-608.
Burnet, F. M. (1974). Intrinsic mutagenesis: a genetic basis of ageing. Pathology 6, 1-11.
Campisi, J. (1997a). Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc 45, 482-488.
Campisi, J. (1997b). The biology of replicative senescence. Eur J Cancer 33, 703-709.
Carman, T. A., Afshari, C. A., and Barrett, J. C. (1998). Cellular senescence in telomerase-expressing Syrian hamster embryo cells. Exp Cell Res 244, 33-42.
Carson, D. A., and Ribeiro, J. M. (1993). Apoptosis and disease. Lancet 341, 1251-1254.
Chan, V., Khoo, U. S., Wong, M. S., Lau, K., Suen, D., Li, G., Kwong, A., and Chan, T. K. (2008). Localization of hRad9 in breast cancer. BMC Cancer 8, 196.
Chen, M. J., Lin, Y. T., Lieberman, H. B., Chen, G., and Lee, E. Y. (2001). ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. J Biol Chem 276, 16580-16586.
Chen, Q. M., Tu, V. C., Catania, J., Burton, M., Toussaint, O., and Dilley, T. (2000). Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J Cell Sci 113 ( Pt 22), 4087-4097.
Cheng, C. K., Chow, L. W., Loo, W. T., Chan, T. K., and Chan, V. (2005). The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res 65, 8646-8654.
Collado, M., Blasco, M. A., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223-233.
Collado, M., and Serrano, M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10, 51-57.
Collins, C. J., and Sedivy, J. M. (2003). Involvement of the INK4a/Arf gene locus in senescence. Aging Cell 2, 145-150.
de Magalhaes, J. P. (2004). From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Exp Cell Res 300, 1-10.
Demers, G. W., Foster, S. A., Halbert, C. L., and Galloway, D. A. (1994). Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci U S A 91, 4382-4386.
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., and et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
Duan, J., Zhang, Z., and Tong, T. (2001). Senescence delay of human diploid fibroblast induced by anti-sense p16INK4a expression. J Biol Chem 276, 48325-48331.
Dulic, V., Kaufmann, W. K., Wilson, S. J., Tlsty, T. D., Lees, E., Harper, J. W., Elledge, S. J., and Reed, S. I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023.
Foreman, K. E., and Tang, J. (2003). Molecular mechanisms of replicative senescence in endothelial cells. Exp Gerontol 38, 1251-1257.
Gasco, M., Shami, S., and Crook, T. (2002). The p53 pathway in breast cancer. Breast Cancer Res 4, 70-76.
Griffith, J. D., Lindsey-Boltz, L. A., and Sancar, A. (2002). Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J Biol Chem 277, 15233-15236.
Hansen, R., and Oren, M. (1997). p53; from inductive signal to cellular effect. Curr Opin Genet Dev 7, 46-51.
Harley, C. B., Vaziri, H., Counter, C. M., and Allsopp, R. C. (1992). The telomere hypothesis of cellular aging. Exp Gerontol 27, 375-382.
Harley, C. B., and Villeponteau, B. (1995). Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev 5, 249-255.
Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37, 614-636.
Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621.
Hirai, I., and Wang, H. G. (2002). A role of the C-terminal region of human Rad9 (hRad9) in nuclear transport of the hRad9 checkpoint complex. J Biol Chem 277, 25722-25727.
Hopkins, K. M., Auerbach, W., Wang, X. Y., Hande, M. P., Hang, H., Wolgemuth, D. J., Joyner, A. L., and Lieberman, H. B. (2004). Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 24, 7235-7248.
Howard, A., and Pelc, S. R. (1951). Synthesis of nucleoprotein in bean root cells. Nature 167, 599-600.
Ishikawa, K., Ishii, H., Saito, T., and Ichimura, K. (2006). Multiple functions of rad9 for preserving genomic integrity. Curr Genomics 7, 477-480.
Itahana, K., Dimri, G., and Campisi, J. (2001). Regulation of cellular senescence by p53. Eur J Biochem 268, 2784-2791.
Kawahara, K., Gotoh, T., Oyadomari, S., Kuniyasu, A., Kohsaka, S., Mori, M., and Nakayama, H. (2001). Nitric oxide inhibits the proliferation of murine microglial MG5 cells by a mechanism involving p21 but independent of p53 and cyclic guanosine monophosphate. Neurosci Lett 310, 89-92.
Kipling, D. (2001). Telomeres, replicative senescence and human ageing. Maturitas 38, 25-37; discussion 37-28.
Kohen, R. (1999). Skin antioxidants: their role in aging and in oxidative stress--new approaches for their evaluation. Biomed Pharmacother 53, 181-192.
Komatsu, K., Hopkins, K. M., Lieberman, H. B., and Wang, H. (2000). Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2. FEBS Lett 481, 122-126.
Lee, M. W., Hirai, I., and Wang, H. G. (2003). Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene 22, 6340-6346.
Liu, M., Casimiro, M. C., Wang, C., Shirley, L. A., Jiao, X., Katiyar, S., Ju, X., Li, Z., Yu, Z., Zhou, J., et al. (2009). p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci U S A 106, 19035-19039.
Maniwa, Y., Yoshimura, M., Bermudez, V. P., Yuki, T., Okada, K., Kanomata, N., Ohbayashi, C., Hayashi, Y., Hurwitz, J., and Okita, Y. (2005). Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 103, 126-132.
McConnell, B. B., Gregory, F. J., Stott, F. J., Hara, E., and Peters, G. (1999). Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 19, 1981-1989.
Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., Majoor, D. M., Shay, J. W., Mooi, W. J., and Peeper, D. S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724.
Murray, J. M., Carr, A. M., Lehmann, A. R., and Watts, F. Z. (1991). Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe. Nucleic Acids Res 19, 3525-3531.
Oshimura, M., and Barrett, J. C. (1997). Multiple pathways to cellular senescence: role of telomerase repressors. Eur J Cancer 33, 710-715.
Pardee, A. B. (1989). G1 events and regulation of cell proliferation. Science 246, 603-608.
Parrilla-Castellar, E. R., Arlander, S. J., and Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3, 1009-1014.
Prakash, L. (1977). Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res 45, 13-20.
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., and Elledge, S. J. (1999). Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166-1171.
Sasaki, M., Ikeda, H., Haga, H., Manabe, T., and Nakanuma, Y. (2005). Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 205, 451-459.
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.
Smit, M. A., and Peeper, D. S. (2008). Deregulating EMT and senescence: double impact by a single twist. Cancer Cell 14, 5-7.
Sorensen, C. S., Syljuasen, R. G., Lukas, J., and Bartek, J. (2004). ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3, 941-945.
St Onge, R. P., Besley, B. D., Pelley, J. L., and Davey, S. (2003). A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 278, 26620-26628.
Stadtman, E. R. (1990). Covalent modification reactions are marking steps in protein turnover. Biochemistry 29, 6323-6331.
Stein, G. H., and Dulic, V. (1998). Molecular mechanisms for the senescent cell cycle arrest. J Investig Dermatol Symp Proc 3, 14-18.
Terleth, C., Schenk, P., Poot, R., Brouwer, J., and van de Putte, P. (1990). Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation. Mol Cell Biol 10, 4678-4684.
Toussaint, O., Remacle, J., Dierick, J. F., Pascal, T., Frippiat, C., Zdanov, S., Magalhaes, J. P., Royer, V., and Chainiaux, F. (2002). From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol 34, 1415-1429.
Unterluggauer, H., Hampel, B., Zwerschke, W., and Jansen-Durr, P. (2003). Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Exp Gerontol 38, 1149-1160.
Vousden, K. H. (2002). Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602, 47-59.
Wang, L., Hsu, C. L., Ni, J., Wang, P. H., Yeh, S., Keng, P., and Chang, C. (2004). Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 24, 2202-2213.
Weilbaecher, R. G., and Lundblad, V. (1999). Assembly and regulation of telomerase. Curr Opin Chem Biol 3, 573-577.
White, J. H., Lusnak, K., and Fogel, S. (1985). Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature 315, 350-352.
Wlaschek, M., Ma, W., Jansen-Durr, P., and Scharffetter-Kochanek, K. (2003). Photoaging as a consequence of natural and therapeutic ultraviolet irradiation--studies on PUVA-induced senescence-like growth arrest of human dermal fibroblasts. Exp Gerontol 38, 1265-1270.
Yin, Y., Zhu, A., Jin, Y. J., Liu, Y. X., Zhang, X., Hopkins, K. M., and Lieberman, H. B. (2004). Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21. Proc Natl Acad Sci U S A 101, 8864-8869.
Zakian, V. A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.
校內:2015-08-27公開