| 研究生: |
周俊言 Chou, Chun-Yen |
|---|---|
| 論文名稱: |
綠色螢光蛋白類似物做為三腳架型的三醯胺基配位基的研究 Studies of a GFP Chromophore Analogue as a Tripodal Trisamido Ligand |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 綠色螢光蛋白 、配位基 |
| 外文關鍵詞: | green fluorescence protein, tripodal |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本次的研究當中我們設計了一個金屬配位基,使用tris(2-aminoethyl)amine (簡稱,tren) 做為骨架,分別在三個末端胺基接上綠色螢光蛋白發光團當作一個三角架型的四牙基配位基。這個發光團擁有醯胺的官能基,在配位化學中是常見的配位基,並研究此配位基跟鐵(III)離子和汞(II)離子間的配位化學。首先使用紫外-可見分光光度法(Ultraviolet–visible spectroscopy)做金屬錯合物的鑑定。配位基與鐵(III)離子和汞(II)離子形成的金屬錯合物計量化學 (stoichiometry) 皆為1:1,最大吸收波長分別在342nm (鐵(III)) 和345nm (汞(II))。締合常數 (association constant) 則分別為1.4×105 (鐵(III)) 和 2.62×104 (汞(II))。接著使用螢光光譜法 (Fluorescence Spectrometry)來觀察錯合物的螢光性質,發現金屬錯合物形成造成螢光淬滅 (fluorescence quenching)。再藉由斯特恩-沃謨方程式 (Stern-Volmer equation) 來證明螢光的淬滅與金屬離子間的關係。最後,使用1H NMR的來鑑定金屬錯合物的配位點和立體結構。結果顯示這個配位基使用tren中心的三級胺,還有三個綠色螢光蛋白發光團上醯胺基的氧原子,以一個螺旋槳的方式將金屬離子包覆在中間形成金屬錯合物。
A tetradentate tripodal trisamido ligand was designed and synthesized by attaching three green fluorescence protein (GFP) chromophore p-HBDIs to the terminal amines of the tris(2-aminoethyl)amine (tren). Tren is well-known tetradantate ligand to chelate transition metal ions of 2+ and 3+, resulting stable metal complexes. The p-HBDI contains amide functional group, which is available to coordinate metal ions via the carbonyl oxygen and nitrogen. The complex formation was studied by UV-vis spectroscopy. The ligand coordinates with Fe3+ and Hg2+ via a 1:1 fashion, resulting a blue shift in the UV absorbance from 370nm of the free ligand to 342nm and 345nm respectively. Association constants were calculated to be 1.4×105 for Fe3+ and 2.62×104 for Hg2+. The emission spectrum of the complex shows fluorescence quenching for both metal complexes. With the Stern-Volmer plot and by comparing the UV absorbance of the ground state, static quenching due to formation of the non-fluorescence complex was proposed. Finally, 1H NMR titration studies were carried out to investigate the possible binding sites and the conformation of the complex. Judging from the proton signal shifts, we assume a propeller-like structure with the tertiary amine and the carbonyl oxygen being the binding site
1. Randall B. Lauffer, Chemical Reviews, 1987, 87 (5), 901-927
2. R. Huber, M. Schneider, I. Mayr, J. Romisch, and E.-P. Paques, FEBS Lett., 1990, 275, 151
3. Ban, Y.; Hotoku, S.; Morita, Y. J. Nucl. Sci. Technol., 2012, 49, 588-594
4. Shimomura, O.; Johnson, F. H.; Saiga, Y. J. Cell. Comp. Physical., 1962, 59, 223-239
5. Stafforst and U. Diederichsen, Eur. J. Org. Chem., 2007, 899.
6. Prachayasittikul, V.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Tansila, N.; Naenna, T. J. Comput. Chem., 2007, 28, 1275
7. Haiech, J.; Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H. ; Bourguignon, J. J.; Pigault, C., Biophys J. 2003, 85, 1839
8. M.D.P. De Costa, W.A.P.A. Jayasinghe, J. Photochem. Photobio. A: Chem., 2004, 162, 591–598.
9. H.C. Chang, H.J. Kim, J.H. Park, Y. Shin, Y. Chung, Bull. Korean Chem. Soc., 1999, 20, 796–800.
10. Z. Xu, S. J. Han, C. Lee, J. Yoon and D. R. Spring, Chem. Commun., 2010, 46, 1679–1681
11. S. Bano, A. Mohd, A. A. P. Khan, K. S. Siddiqi, J. Chem. Eng. Data. 2010, 55, 5759
12. J.H. Chang, Y.M. Choi, Y.K. Shin, Bull. Korean Chem. Soc., 2001, 22, 527–530.
13. H. Sigel, R. B. Martin, Chem. Rev. 1982, 82, 385-426
14. G. Krishnamoorthy, B. S. Prabhananda, J. Inorg. Nucl. Chem., 1981, 43, 1267-1275
15.N.G. Nair, G. Perry, M.A. Smith, V.P. Reddy, J. Alzheimers Dis. 2010, 20 (1), 57-66.
16.Y. Mi, Z. Cao, Y. Chen, S. Long, Q. Xie, D. Liang, W. Zhuet, J. Xiang, Sens. Actuators B, 2014, 192, 164–172.
17.J. Gary, A. Adeyemo, Inorg. Chim. Acta,1981, 55, 93.
18.O. Clement, B.M. Rapko, B.P. Hay, Coord. Chem. Rev, 1998, 170, 203-243.
校內:2023-07-01公開