| 研究生: |
黃芷玲 Huang, Chih-Ling |
|---|---|
| 論文名稱: |
研究化癌藥物cisplatin篩選出之新穎肺癌細胞群 Studies on a novel lung cancer cell population selected by the chemotherapeutic agent cisplatin |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 抗藥性 、轉移 |
| 外文關鍵詞: | Chemoresistance, Metastasis |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於轉移與抗藥性的發生,使得肺癌在台灣成為癌症相關死亡原因的第一位,雖然已有文獻指出鉑金類抗癌藥物合併治療可以讓非小細胞肺癌患者達到較好的預後,但仍然無法避免轉移或抗藥性產生。因此探討在腫瘤組織當中是否存在一群新穎的細胞群是很重要的課題,這群細胞可能同時具有較好的轉移能力與抗藥性,且是過去未曾被發現過的。在研究當中,選用了非小細胞肺癌的細胞株 H1299,並對它處理接近 LD50 之 Cisplatin 劑量,三天後收集含有懸浮細胞之上清液並離心,接著將這些細胞重新培養於無藥物之正常細胞培養液中。大部份上清液中是已經死亡的細胞,但仍然有極小部分之細胞可以重新貼附於培養皿中,增生並形成細胞群落。這群重新貼附的 (Reattached, R) 細胞具有四項重要的特色:失去細胞間黏著能力、較慢的生長速率、抗藥性、及轉移能力;此外 R 細胞可以在 soft agar中形成較大之細胞群落,顯示它們具有較好之腫瘤形成能力。最後發現這群細胞會高度表現 CD44 蛋白,一個位於細胞膜上的分子,扮演細胞間黏著的角色,也有文獻指出與癌細胞轉移有關。總體而言,在研究過程當中我們發現了一新穎肺癌細胞群,可能存在於異質性的腫瘤組織當中,且具有惡性的潛能。
Due to the occurrence of metastasis and resistance to therapy, lung cancer is the leading cause of cancer-related death in Taiwan. Platinum-based chemotherapy confers a better survival in patients with non-small cell lung cancer. However, the efficacy is still limited by acquired or intrinsic resistance of cells to the drug. Therefore, it is important to elucidate whether there is any kind of cell population with capability to metastasize and chemo-resist which has never been investigated previously. In this study, non-small cell lung cancer H1299 cells were treated with cisplatin at the dose of LD50 for 3 days and the suspended cells were collected to re-plated them in culture dishes without cisplatin treatment. A small portion of suspended cells were reattached, proliferated, and formed colonies. These “reattached” cells possess four critical features including loss of cell adhesion, slower proliferation rate, chemo-resistance, and higher metastatic ability. In addition, these reattached cells could form larger colonies in soft agar, indicating that the cells may harbor tumorigenesis potential. These cells also over-expressed CD44, a protein which is cell surface marker for cell-cell adhesion and prone to be involved in metastasis. Overall, our results demonstrate that a newly selected population of lung cancer cells may exist in the tumor mass and has malignant potential.
Ambudkar,S.V., Dey,S., Hrycyna,C.A., Ramachandra,M., Pastan,I., and Gottesman,M.M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39, 361-398.
Arriagada,R., Bergman,B., Dunant,A., Le,C.T., Pignon,J.P., and Vansteenkiste,J. (2004). Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N. Engl. J. Med. 350, 351-360.
Beckles,M.A., Spiro,S.G., Colice,G.L., and Rudd,R.M. (2003). The physiologic evaluation of patients with lung cancer being considered for resectional surgery. Chest 123, 105S-114S.
Behrens,J. (1993). The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res. Treat. 24, 175-184.
Bellahcene,A., Castronovo,V., Ogbureke,K.U., Fisher,L.W., and Fedarko,N.S. (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat. Rev. Cancer 8, 212-226.
Bertolini,G., Roz,L., Perego,P., Tortoreto,M., Fontanella,E., Gatti,L., Pratesi,G., Fabbri,A., Andriani,F., Tinelli,S., Roz,E., Caserini,R., Lo,V.S., Camerini,T., Mariani,L., Delia,D., Calabro,E., Pastorino,U., and Sozzi,G. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. U. S. A 106, 16281-16286.
Borst,P. and Elferink,R.O. (2002). Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537-592.
Brooks,S.A., Lomax-Browne,H.J., Carter,T.M., Kinch,C.E., and Hall,D.M. (2010). Molecular interactions in cancer cell metastasis. Acta Histochem. 112, 3-25.
Cole,S.P., Bhardwaj,G., Gerlach,J.H., Mackie,J.E., Grant,C.E., Almquist,K.C., Stewart,A.J., Kurz,E.U., Duncan,A.M., and Deeley,R.G. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650-1654.
Collins,L.G., Haines,C., Perkel,R., and Enck,R.E. (2007c). Lung cancer: diagnosis and management. Am. Fam. Physician 75, 56-63.
Collins,L.G., Haines,C., Perkel,R., and Enck,R.E. (2007b). Lung cancer: diagnosis and management. Am. Fam. Physician 75, 56-63.
Collins,L.G., Haines,C., Perkel,R., and Enck,R.E. (2007a). Lung cancer: diagnosis and management. Am. Fam. Physician 75, 56-63.
Dean,M., Fojo,T., and Bates,S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275-284.
Furuse,M., Hirase,T., Itoh,M., Nagafuchi,A., Yonemura,S., Tsukita,S., and Tsukita,S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123, 1777-1788.
Goodell,M.A., Brose,K., Paradis,G., Conner,A.S., and Mulligan,R.C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797-1806.
Ho,M.M., Ng,A.V., Lam,S., and Hung,J.Y. (2007a). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827-4833.
Ho,M.M., Ng,A.V., Lam,S., and Hung,J.Y. (2007b). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827-4833.
Hoshino,H., Miyoshi,N., Nagai,K., Tomimaru,Y., Nagano,H., Sekimoto,M., Doki,Y., Mori,M., and Ishii,H. (2009). Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem. Biophys. Res. Commun. 390, 1061-1065.
Hurt,E.M., Kawasaki,B.T., Klarmann,G.J., Thomas,S.B., and Farrar,W.L. (2008). CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98, 756-765.
Inamura,K. and Ishikawa,Y. (2010). Lung cancer progression and metastasis from the prognostic point of view. Clin. Exp. Metastasis 27, 389-397.
Jemal,A., Siegel,R., Xu,J., and Ward,E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300.
Jiang,M., Wang,C.Y., Huang,S., Yang,T., and Dong,Z. (2009). Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am. J. Physiol Renal Physiol 296, F983-F993.
Jothy,S. (2003). CD44 and its partners in metastasis. Clin. Exp. Metastasis 20, 195-201.
Kurrey,N.K., Jalgaonkar,S.P., Joglekar,A.V., Ghanate,A.D., Chaskar,P.D., Doiphode,R.Y., and Bapat,S.A. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27, 2059-2068.
Leung,E.L., Fiscus,R.R., Tung,J.W., Tin,V.P., Cheng,L.C., Sihoe,A.D., Fink,L.M., Ma,Y., and Wong,M.P. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS. One. 5, e14062.
Levina,V., Marrangoni,A.M., DeMarco,R., Gorelik,E., and Lokshin,A.E. (2008). Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS. One. 3, e3077.
Mack,B. and Gires,O. (2008). CD44s and CD44v6 expression in head and neck epithelia. PLoS. One. 3, e3360.
Nguyen,V.N., Mirejovsky,T., Melinova,L., and Mandys,V. (2000). CD44 and its v6 spliced variant in lung carcinomas: relation to NCAM, CEA, EMA and UP1 and prognostic significance. Neoplasma 47, 400-408.
Nooter,K., Westerman,A.M., Flens,M.J., Zaman,G.J., Scheper,R.J., van Wingerden,K.E., Burger,H., Oostrum,R., Boersma,T., Sonneveld,P., and . (1995). Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin. Cancer Res. 1, 1301-1310.
Ohashi,R., Takahashi,F., Cui,R., Yoshioka,M., Gu,T., Sasaki,S., Tominaga,S., Nishio,K., Tanabe,K.K., and Takahashi,K. (2007). Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225-234.
Oliver,T.G., Mercer,K.L., Sayles,L.C., Burke,J.R., Mendus,D., Lovejoy,K.S., Cheng,M.H., Subramanian,A., Mu,D., Powers,S., Crowley,D., Bronson,R.T., Whittaker,C.A., Bhutkar,A., Lippard,S.J., Golub,T., Thomale,J., Jacks,T., and Sweet-Cordero,E.A. (2010). Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev. 24, 837-852.
Oppenheimer,S.B. (2006). Cellular basis of cancer metastasis: A review of fundamentals and new advances. Acta Histochem. 108, 327-334.
Orian-Rousseau,V. (2010). CD44, a therapeutic target for metastasising tumours. Eur. J. Cancer 46, 1271-1277.
Penno,M.B., August,J.T., Baylin,S.B., Mabry,M., Linnoila,R.I., Lee,V.S., Croteau,D., Yang,X.L., and Rosada,C. (1994). Expression of CD44 in human lung tumors. Cancer Res. 54, 1381-1387.
Ponta,H., Sherman,L., and Herrlich,P.A. (2003). CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33-45.
Ponti,D., Costa,A., Zaffaroni,N., Pratesi,G., Petrangolini,G., Coradini,D., Pilotti,S., Pierotti,M.A., and Daidone,M.G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506-5511.
Prosper,F. and Verfaillie,C.M. (2001). Regulation of hematopoiesis through adhesion receptors. J. Leukoc. Biol. 69, 307-316.
Rocchi,E., Khodjakov,A., Volk,E.L., Yang,C.H., Litman,T., Bates,S.E., and Schneider,E. (2000). The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem. Biophys. Res. Commun. 271, 42-46.
Singh,A. and Settleman,J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751.
Thiery,J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740-746.
Wielenga,V.J., van,d., V, Mulder,J.W., Kruyt,P.M., Weidema,W.F., Oosting,J., Seldenrijk,C.A., van,K.C., Offerhaus,G.J., and Pals,S.T. (1998). CD44 splice variants as prognostic markers in colorectal cancer. Scand. J. Gastroenterol. 33, 82-87.
Wijnhoven,B.P., Dinjens,W.N., and Pignatelli,M. (2000). E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87, 992-1005.
Woodward,O.M., Kottgen,A., and Kottgen,M. (2011). ABCG transporters and disease. FEBS J.
Wu,C. and Alman,B.A. (2008). Side population cells in human cancers. Cancer Lett. 268, 1-9.
Yang,J., Mani,S.A., Donaher,J.L., Ramaswamy,S., Itzykson,R.A., Come,C., Savagner,P., Gitelman,I., Richardson,A., and Weinberg,R.A. (2004a). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
Yang,J., Mani,S.A., Donaher,J.L., Ramaswamy,S., Itzykson,R.A., Come,C., Savagner,P., Gitelman,I., Richardson,A., and Weinberg,R.A. (2004b). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
Yang,J., Mani,S.A., Donaher,J.L., Ramaswamy,S., Itzykson,R.A., Come,C., Savagner,P., Gitelman,I., Richardson,A., and Weinberg,R.A. (2004c). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
Yin,T., Wang,C., Liu,T., Zhao,G., Zha,Y., and Yang,M. (2007). Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J. Surg. Res. 141, 196-203.
Yu,F., Yao,H., Zhu,P., Zhang,X., Pan,Q., Gong,C., Huang,Y., Hu,X., Su,F., Lieberman,J., and Song,E. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109-1123.
Yu,Q. and Stamenkovic,I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35-48.
Yu,Q. and Stamenkovic,I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163-176.
Zoller,M. (2011). CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer 11, 254-267.
校內:2021-07-31公開