簡易檢索 / 詳目顯示

研究生: 許文叡
Hsu, Wen-Rui
論文名稱: 具氧化鎳覆蓋層鋁摻雜氧化銦鋅場效應二極體於改善紫外光感測性能與可靠度之研究
Enhanced sensing performance and stability of UV Photodetectors based on Al-IZO Field Effect Diodes with NiO Capping Layer
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 149
中文關鍵詞: 鋁摻雜氧化銦鋅薄膜電晶體場效二極體氧化鎳覆蓋層紫外光偵測器
外文關鍵詞: Al-doped In-Zn-O (AIZO), Thin film transistors (TFTs), Field effect diodes (FEDs), NiO capping layer (NiO CL), ultraviolet photodetectors (UV-PDs)
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract VI 誌謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XXI 第1章 緒論 1 1-1 紫外光感測器發展概論 1 1-1-1 半導體型紫外光感測元件 2 1-1-2 場效二極體元件簡介 4 1-1-3 覆蓋層結構介紹 6 1-2 Al-IZO 8 1-3 NiO材料 15 1-4 研究動機 17 第2章 研究理論基礎建構 21 2-1 薄膜電晶體之操作原理與參數萃取 21 2-1-1 可靠度分析理論 33 2-1-2 閘極漏電流機制探討 37 2-2 場效應二極體之操作原理與參數萃取 40 2-2-1 F-FED 42 2-2-2 B-FED 45 2-3 具CL場效應二極體操作原理 48 2-4 紫外光感測器操作原理 50 2-4-1 光感測性能參數 51 第3章 TFT與FED製備流程 55 3-1 儀器設備介紹 55 3-2 鋁摻雜氧化銦鋅場效應二極體製備方法 58 (A) 基板清洗 59 (B) 第一道光罩:沉積高介電常數氧化矽鉿介電層 59 (C) 第二道光罩:沉積鋁摻雜氧化銦鋅通道層 60 (D) 第三道光罩:沉積緩衝層及金屬電極 60 (E) 第四道光罩:NiO CL之製備 61 (F) 第五道光罩:場效二極體之製備 62 3-3 UV-PDs光電特性量測系統介紹 63 第4章 鋁摻雜氧化銦鋅與氧化鎳材料分析 65 4-1 鋁摻雜氧化銦鋅材料分析 65 4-1-1 XRD薄膜分析 65 4-1-2 霍爾量測 67 4-1-3 XPS薄膜分析 69 4-1-4 穿透率及UPS量測分析 71 4-1-5 薄膜相對介電系數量測分析 78 4-2 NiO材料分析 79 4-2-1 XRD薄膜分析 79 4-2-2 霍爾量測 80 4-2-3 穿透率量測分析 81 第5章 Al-IZO TFTs之電性與可靠度分析 82 5-1 不同Al含量摻雜-IZO TFTs之電性分析 82 5-1-1 通道層未退火Al-IZO TFTs之電性分析 83 5-1-2 通道層熱退火Al-IZO TFTs之電性分析 86 5-2 Al-IZO TFTs可靠度分析 88 5-2-1 Al-IZO TFTs遲滯分析 89 5-2-2 Al-IZO TFTs之正、負偏壓應力測試 90 5-2-3 Al-IZO TFTs之照光與負偏壓應力測試 93 第6章 Al (5%)-IZO TFTs與FEDs具NiO CL之光電特性及可靠度分析 97 6-1 Al (5%)-IZO TFTs與FEDs具NiO CL之電性分析 98 6-1-1 具Al (5%)-IZO TFTs與FEDs電性分析 99 6-1-2 具NiO CL TFTs與FEDs電性分析 101 6-2 紫外光感測電性分析 105 6-2-1 Al (5%)-IZO TFTs與FEDs光感測性能分析 105 6-2-2 具NiO CL FEDs光感測性能分析 110 6-2-3 CL厚度之調變 114 6-3 持續光電導效應 119 6-4 UV-PDs可靠度分析 122 6-5 閘極漏電流機制分析 130 第7章 結論與未來研究建議 133 7-1 結論 133 1. 鋁摻雜氧化銦鋅通道層之製備 133 2. Al (5%)-IZO具NiO CL之TFT與FED 134 3. UV-PDs之可靠度改善 136 7-2 未來研究之建議 137 參考文獻 139

    [1] E. Monroy, F. Omn`es and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33–R51 (2003).
    [2] Z.Q. Xu, H. Deng, J. Xie, Y. Li, X.T. Zu et al., "Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol–gel method," Appl. Surf. Sci. 253, 476–479 (2008).
    [3] L. Luo, Y.F. Zhang, S.S. Mao, L.W. Lin et al., "Fabrication and characterization of ZnO nanowires based UV photodiodes," Sens. Actuator A Phys. 127, 201–206 (2003).
    [4] H. Ohta, and H. Hosono, " Transparent oxide optoelectronics," Mater. Today 7, 42–51 (2004).
    [5] F. Neele, and R. Schleijpen, “Electro-optical missile plume detection,” Proc. of SPIE 5075, 270–280 (2003).
    [6] R. Debnath, T. Xie, B. Wen, and W. Li, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Adv. 5, 14646–14652 (2015).
    [7] A. B. Yadav, A. Pandey, and D. Somvanshi, “Sol-Gel-Based Highly Sensitive Pd/n-ZnO Thin Film/n-Si Schottky Ultraviolet Photodiodes," IEEE Trans. Electron Devices 62, 1879–1884 (2015).
    [8] J. Yang, L. Tang, W. Luo, S. Feng, C. Leng, H. Shi et al., “Interface Engineering of a Silicon/Graphene Heterojunction Photodetector via a Diamond-Like Carbon Interlayer,” ACS Appl. Mater. Interfaces 13, 4692–4702 (2021).
    [9] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang et al., “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D 41, 1–5 (2008).
    [10] C. Sharma, N. Sharma, P. Sharma, and V. Kumar, “A Review of BJT Based Phototransistor,” Int. J. Eng. Sci. 3, 2278–0181(2014).
    [11] B. J. Kim, N. K. Cho, S. Park, S. Jeong, D. Jeon, Y. Kang et al., “Highly transparent phototransistor based on quantum-dots and ZnO bilayers for optical logic gate operation in visible-light,” RSC Adv. 10, 16404–16414(2020).
    [12] C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, I. Akasaki et al., “Solar-blind UV photodetectors based on GaN/AlGaN p-i-n photodiodes,” Jpn. J. Appl. Phys. 39, 387–389 (2000).
    [13] S. Yang, D. Zhou, H. Lu, D. Chen, F. Ren, R. Zhang et al., “4H-SiC p-i-n Ultraviolet Avalanche Photodiodes Obtained by Al Implantation,” IEEE Photon. Technol. Lett. 28(11), 1189–1192 (2016).
    [14] J. D. Hwang, F. H. Wang, C. Y. Kung, and M. C. Chan, “Using the Surface Plasmon Resonance of Au Nanoparticles to Enhance Ultraviolet Response of ZnO Nanorods-Based Schottky-Barrier Photodetectors,” IEEE Trans. Nanotechnol. 14(2), 318–321 (2015).
    [15] T.F. Zhang, G.A. Wu, J.Z. Wang, Y.Q. Yu, D.Y. Zhang, D.D. Wang et al., “A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction,” Nanophotonics 6(5), 1073–1081 (2016).
    [16] M. Patel, H.-S. Kim, and J. Kim, “All Transparent Metal Oxide Ultraviolet Photodetector,” Adv. Electron. Mater. 1(11), 1500232 (2015).
    [17] R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan et al., “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Adv. 5, 14646–14652 (2015).
    [18] D. Y. Kim, J. Ryu, J. Manders, J. Lee, and F. So, “Air-Stable, Solution-Processed Oxide p–n Heterojunction Ultraviolet Photodetector,” ACS Appl. Mater. Interfaces 6(3), 1370–1374 (2014).
    [19] W. L. Huang, M. H. Hsu, S. P. Chang, S. J. Chang, and Y. Z. Chiou, “Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application,” ECS J. Solid State Sci. Technol. 8(7), 3140–3143 (2019).
    [20] M. H. Hsu, J. C. Syu, S. P. Chang, W. L. Huang, S. J. Chang et al., “Photoresponses of Gallium Zinc Tin Oxide Thin-Film Transistors Fabricated by Cosputtering Method,” IEEE Sens. Lett. 2(4), 1–4 (2018).
    [21] W. L. Huang, C. C. Yang, S. P. Chang, and S. J. Chang, “Photoresponses of Zinc Tin Oxide Thin-Film Transistor,” J. Nanosci. Nanotechnol. 20(3), 1704–1708 (2020).
    [22] H. M. Chen, T. C. Chang, Y. H. Tai, Y. C. Chen, M. C. Yang, C. H. Chou et al., “Ultrahigh Sensitivity Self-Amplification Phototransistor Achieved by Automatic Energy Band Lowering Behavior,” IEEE Trans. Electron Devices 61(9), 3186–3190 (2014).
    [23] J. H. Kim, U. K. Kim, Y. J. Chung, and C. S. Hwang, “Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous In–Ga–Zn–O thin film transistors under light illumination,” Appl. Phys. Lett. 98, 232102 (2011).
    [24] I. Soga, A. Komuro, and O. Tsuboi, “Rectifying characteristics of thin film self-switching devices with ZnO deposited by atomic layer deposition,” Electron. Lett. 48(15), 914–916 (2012).
    [25] Z. Wang, F. H. Alshammari, H. Omran, M. K. Hota, H. A. Al-Jawhari, K. N. Salam et al., “All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage,” Adv. Electron. Mater. 5(12), 1900531 (2019).
    [26] Y. Zhang, Z. Mei, S. Cui, H. Liang, Y. Liu, X. Du et al., “Flexible Transparent Field-Effect Diodes Fabricated at Low-Temperature with All-Oxide Materials,” Adv. Electron. Mater. 2(5), 1500486 (2016).
    [27] B. Tiwari, P. G. Bahubalindruni, A. Santa, J. Martins, P. Mittal, J. Goes et al., “Oxide TFT rectifiers on flexible substrates operating at NFC frequency range,” IEEE J. Electron Devices Soc. 7, 329–334 (2019).
    [28] S. H. Cho, S. W. Kim, W. S. Cheong, C. W. Byun, C.-S. Hwang, K. I. Cho et al., “Oxide Thin Film Transistor Circuits for Transparent RFID Applications,” IEICE Trans. Electron. 93(10), 1504–1510 (2010).
    [29] M. Wang, L. Liang, H. Luo, S. Zhang, H. Zhang, K. Javaid et al., “Threshold Voltage Tuning in a-IGZO TFTs With Ultrathin SnOx Capping Layer and Application to Depletion-Load Inverter,” IEEE Electron Device Lett. 37(4), 422–425 (2016).
    [30] J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song et al., “High- Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction,” ACS Appl. Mater. Interfaces 10, 8102–8109 (2018).
    [31] H. Kim, S. Yang, K. Park, P. Shanmugam, and J.-Y. Kwon, “Leakage Current Analysis Depends on Grain SizeVariation in Zinc Oxide Thin Film Transistor,” 224th ECS Meet., 76 (2013).
    [32] J. Y. Choi and S. Y. Lee, “Comprehensive review on the development of high mobility in oxide thin film transistors,” J. Korean Phys. Soc. 71(9), 516–527 (2017).
    [33] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [34] Ü. Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE Proc. 98(7), 1255–1268 (2010).
    [35] J.Y. Kwon, D.J. Lee, and K.B. Kim, "Review paper: Transparent amorphous oxide semiconductor thin film transistor," Electron. Mater. Lett. 7(1), 1–11 (2011).
    [36] C. B. Ong, L. Y. Ng, and A. W. Mohammad, “A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications,” Renew.Sust. Energ. Rev. 81, 536–551 (2018).
    [37] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids 352, 851–858 (2006).
    [38] J. Y. Kwon, J. S. Jung, K. S. Son, K. H. Lee, J. S. Park, T. S. Kim et al., “Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach,” J. Electrochem. Soc. 158(4), 433–437 (2011).
    [39] S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors,” Phys. Rev. B 72, 035215 (2005).
    [40] S. Parthiban and J.Y. Kwon, "Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor," J. Mater. Res. 29(15), 1585–1596 (2014).
    [41] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids 352(9-20), 851–858 (2006).
    [42] K. Ghaffarzadeh et al., "Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress," Appl. Phys. Lett. 97, 113504 (2010).
    [43] M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors," Appl. Phys. Lett. 97, 173506 (2010).
    [44] H. W. Park, J. Bae, H. Kang, D. H. Kim, P. Jung, H. Park et al., “A Study on the Hot Carrier Effect in InGaZnO Thin Film Transistors,” Dig. Tech. Pap. - SID Int. Symp. 19, 1222–1225 (2019).
    [45] L. Xiao, Y. Zhao, Y. Yang, Y. Cao, X. Ai, H. Yang et al., “Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method,” Electrochim. Acta 54, 545–550 (2008).
    [46] S.Y. Lee, T. Kang, S. M. Han, and Y. S. Lee, “Temperature dependence of SilnZnO thin film transistor fabricated by solution process,” Trans. Electr. Electron. Mater. 16, 46–48 (2014).
    [47] G.H. Kim, W.H. Jeong, B.D. Ahn, H.S. Shin, H.J. Kim, H.J. Kim et al., “Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors,” Appl. Phys. Lett. 96, 163506 (2010).
    [48] J. i. Park, Y. Lim, M. Jang, S. i. Choi, N. Hwang, M. Yi et al., “Improved stability of aluminum co-sputtered indium zinc oxide thin-film transistor,” Mater. Res. Bull. 96, 155–159 (2017).
    [49] S. Jian, H. Yanhua, and G. Hao, “Improved mobility and conductivity of an Al2O3 incorporated indium zinc oxide system,” J. Appl. Phys. 110, 023709 (2011).
    [50]Y. Gao, J. Lu, J. Zhang, and X. Li, “The energy band tailored by Al incorporation in solution-processed IZO TFTs,” RSC Adv. 5(47), 37635–37639 (2015).
    [51] A. Reed, C. Stone, K. Roh, H. W. Song, X. Wang, M. Liu et al., “The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors,” J. Mater. Chem. C 8, 13798–13810 (2020).
    [52] T. H. Cheng, S. P. Chang, and S. J. Chang, “Electrical Properties of Indium Aluminum Zinc Oxide Thin Film Transistors,” J. Electron. Mater. 47(11), 6923–6928 (2018).
    [53] W. Xu, J. Jiang, L. Han, and X. Feng, “Highly efficient UV-Ozone treatment for IAZO active layer to facilitate the low temperature fabrication of high performance thin film transistors,” Ceram. Int. 46(11), 17295–17299 (2020).
    [54] J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen et al., “Stability of amorphous InAlZnO thin-film transistors,” J. Vac. Sci. Technol. B 32(1), 010602 (2014).
    [55] D. Adler and J. Feinleib, “Electrical and Optical Properties of Narrow-Band Materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
    [56] A. Kunz, “Electronic structure of NiO,” J. Phys. C: Solid State Phys. 14(16), L455–L460 (1981).
    [57] I. Austin and N. Mott, “Polarons in crystalline and non-crystalline materials,” Adv. Phys. 50(7), 757–812 (2010).
    [58] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys and A. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
    [59] S. Yasuno, T. Kugimiya, S. Morita, A. Miki, F. Ojima, S. Sumie et al., “Correlation of photoconductivity response of amorphous In–Ga–Zn–O films with transistor performance using microwave photoconductivity decay method,” Appl. Phys. Lett. 98(10), 102107 (2011).
    [60] O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84(20), 4092–4094 (2004).
    [61] K. Park, J. H. Kim, T. Sung, H.-W. Park, J.-H. Baeck, J. Bae et al., “Highly Reliable Amorphous In-Ga-Zn-O Thin-Film Transistors Through the Addition of Nitrogen Doping,” IEEE Trans. Electron Devices 66(1), 457–463 (2019).
    [62] C. P. Auth and J. D. Plummer, “Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s,” IEEE Electron Device Lett. 18(2), 74–76 (1997).
    [63] D. A. Neamen, Semiconductor physics and devices: Basic principles, 4th ed., McGraw-Hill, 2012.
    [64] A. Wang, B. H. Calhoun, and A. p. chandrakasan, Sub-threshold Design for Ultra Low-Power Systems, Springer, 2006.
    [65] S. Jun, C. Jo, H. Bae, H. Choi, D. H. Kim, D. M. Kim et al., "Unified Subthreshold Coupling Factor Technique for Surface Potential and Subgap Density-of-States in Amorphous Thin Film Transistors," IEEE Electron Device Lett. 34(5), 641–643 (2013).
    [66] O. Weber, M. Cassé, L. Thevenod, F. Ducroquet, T. Ernst, S. Deleonibus et al., "On the mobility in high-κ/metal gate MOSFETs: Evaluation of the high-κ phonon scattering impact," Solid-State Electron. 50(4), 626–631 (2006).
    [67] M. C. J. M. Vissenberg, and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Phys. Rev. B 57, 12964–12967 (1998).
    [68] B. Laikhtman, and P. M. Solomon, "Remote phonon scattering in field-effect transistors with a high κ insulating layer," J. Appl. Phys. 103(1), 014501 (2008).
    [69] S. Park, E. N. Cho, and I. Yun, “Investigation on the relationship between channel resistance and subgap density of states of amorphous InGaZnO thin film transistors,” Solid-State Electron. 75, 93–96 (2012).
    [70] C. S. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, S. Takeuchi et al., "Top-Gate Staggered Amorphous Silicon Thin-Film Transistors: Series Resistance and Nitride Thickness Effects,” J. Appl. Phys. 37, 5914–5920 (1998).
    [71] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, 2nd Ed., Cambridge Univ. Press, 2009.
    [72] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 11(1), 112–117 (2011).
    [73] B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, "Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors," J. Alloys Compd. 580, 10–14 (2013).
    [74] K. A. Kim, M. J. Park, W. H. Lee, and S. M. Yoon, "Characterization of negative bias-illumination-stress stability for transparent top-gate In-Ga-Zn-O thin-film transistors with variations in the incorporated oxygen content," J. Appl. Phys. 118(23), 1–7 (2015).
    [75] X. Huang, D. Zhou, W. Xu, and Y. Wang, "Enhanced temperature and light stability of amorphous indium-gallium-zinc oxide thin film transistors by interface nitrogen doping," J. Vac. Sci. Technol. B 36(4), 040601 (2018).
    [76] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim et al., "Effect of high-pressure oxygen annealing on negative bias illumination stressinduced instability of InGaZnO thin film transistors," Appl. Phys. Lett. 98, 103509 (2011).
    [77] H. Schroeder, "Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!," J. Appl. Phys. 117(21), 215103 (2015).
    [78] D. B. Ruan, P. T. Liu, Y. H. Chen, Y. C. Chiu, T. C. Chien, M. C. Yu et al., “Photoresponsivity Enhancement and Extension of the Detection Spectrum for Amorphous Oxide Semiconductor Based Sensors,” Adv. Electron. Mater. 5(3), 1800824 (2019).
    [79] H. Yu, X. Liu, L. Yan, T. Zou, H. Yang, C. Liu et al., “Enhanced UV–visible detection of InGaZnO phototransistors via CsPbBr3 quantum dots,” Semicond. Sci. Technol. 34, 25013 (2019).
    [80] J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song et al., “High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p−n Heterojunction,” ACS Appl. Mater. Interfaces 10, 8102–8109 (2018).
    [81] J. H. Kim, U. K. Kim, Y. J. Chung, and C. S. Hwang, “Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous In–Ga–Zn–O thin film transistors under light illumination,” Appl. Phys. Lett. 98, 232102 (2011).
    [82] E. O. Filatova and A. S. Konashuk, “Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries,” J. Phys. Chem. C 119(35), 20755–20761 (2015).
    [83] D. Solís-Cortés, E. Navarrete-Astorga, J. L. Costa-Krämer, J. Salguero-Fernandez, R. Schrebler, D. Leinen et al., “Ga-doped IZO films obtained by magnetron sputtering as transparent conductors for visible and solar applications,” Ceram. Int. 45(5), 5577–5587 (2019).
    [84] S. Z. Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T. G. Finstad, H. Fjellvåg et al., “Phase stability, electronic structure, and optical properties of indium oxide polytypes,” Phys. Rev. B 76(7), 075129 (2007).
    [85] K. A. Kim, M. J. Park, W. H. Lee, and S. M. Yoona, "Characterization of negative biasillumination-stress stability for transparent top-gate In-Ga-Zn-O thin-film transistors with variations in the incorporated oxygen content," J. Appl. Phys. 118, 234504 (2015).
    [86] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee et al., “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Mater. 11, 301–305 (2012).
    [87] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, “Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(12), 122105 (2011).
    [88] M. G. Yun, S. H. Kim, C. H. Ahn, S. W. Cho, and H. K. Cho, “Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors,” J. Phys. D 46(47), 475106 (2013).
    [89] M. Y. Su, The use of a Patterned NiO Capping Layer to Improve photoresponsivity of Ultraviolet Photodetectors Based on IGZO Field Effect Diodes, Institute of Microelectronics, Dept. of Electrical Engineering, National Cheng Kung University, 2020.
    [90] C. J. Chiu, W. Y. Weng, S. J. Chang, S. P. Chang, and T. H. Chang, “A Deep UV Sensitive Ta_2 O_5/a-IGZO TFT,” IEEE Sens. J. 11(11), 2902–2905 (2011).
    [91] J. Yang, H. Kwak, Y. Lee, Y. S. Kang, M. H. Cho, J. H. Cho et al., “MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity,” ACS Appl. Mater. Interfaces 8, 8576−8582 (2016).
    [92] W.-L. Huang, M.-H. Hsu, S.-P. Chang, S.-J. Chang, and Y.-Z. Chiou, "Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application, " ECS J. Solid State Sci. Technol. 8(7), 3140–3143 (2019).
    [93] W. L. Huang, C.-C. Yang, S.-P. Chang, and S.-J. Chang, "Photoresponses of Zinc Tin Oxide Thin -Film Transistor, " J. Nanosci. Nanotechnol. 20(3), 1704–1708 (2020).

    無法下載圖示 校內:2026-10-25公開
    校外:2026-10-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE