| 研究生: |
張肇明 Chang, Chao-Ming |
|---|---|
| 論文名稱: |
氣壓式紫外光奈米壓印微影技術暨奈米高深寬比矽結構製作之研究 UV nanoimprint lithography with a compressed air press and silicon nano structure fabrication with high aspect ratios |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 紫外光奈米壓印微影技術 、軟微影技術 、半導體製程技術 、電漿蝕刻技術 、光學偏振片 |
| 外文關鍵詞: | UV nanoimprint lithography, soft lithography, semiconductor manufacturing technology, plasma etching technology, optical polarizer |
| 相關次數: | 點閱:145 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米壓印微影技術具有次世代極發展潛力的一項技術,本論文為研究紫外光
奈米壓印微影技術,在壓印出圖形後進行電漿乾式蝕刻的製程。我們架設紫外光
奈米壓印系統並改良光源架設,使得曝光時間能夠減少;使用複合式軟微影技術
並測試適合壓印的條件,進一步比較紫外光阻劑中添加附著性提升的配方;我們
以壓印定義出 1 微米的 1-D 週期結構當遮罩,然後成功蝕刻出 1 : 6 的深寬比結
構。另一方面,本論文利用干涉式微影技術定義 500 奈米以下的小線寬結構,並
測定出適合小線寬的高深寬比結構優化參數,討論反應式離子蝕刻系統與感應耦
合式蝕刻系統在蝕刻製程上的差別。最後,我們製作出光學偏振元件,以簡易的
模具複製方式和蒸鍍不同厚度的鋁金屬製作光學偏振片,並討論 s-PDMS、
h-PDMS 和 NOA72 三種材料、不同蒸鍍金屬厚度對於偏振態的影響。
Nanoimprint lithography (NIL) is a potential technology among the next generation lithographies. In this thesis, UV-NIL technology was investigated owing to its low temperature, high resolution, low cost, and easy process. We set up UV-NIL system with an improved output intensity of the UV source which can reduce the exposure time. A hybrid stamp was proposed to improve the imprinting uniformity.
Three compositions of UV-NIL resists were compared. With an imprinted resist as the soft mask, an one-dimensional (1D) grating structure with a pitch of 1μm and an aspect ratio of 6 was successfully fabricated on the silicon substrate. One the other hand, we investigate the optimal fabricating parameters of the inductively coupled plasma (ICP) etching for the pattern pitch smaller than 500 nm. The patterns were defined with the interferometric lithography in the SU-8 resists. The highest aspect ratio we obtained was 10.9 on the silicon substrate. Furthermore, the high aspect ratio
silicon structure was used as the mold to fabricate the wire-grid polarizer.
107
Reference
1. B. J. Lin, "Marching of the microlithography horses: Electron, ion,
and photon: Past, present, and future," SPIE 6520, 652002, 1-15 (2007).
2. "INTERNATIONAL TECHNOLOGY ROADMAP FOR
SEMICONDUCTORSS 2009 EDITION LITHOGRAPHY,"
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Litho
.pdf.
3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint
lithography," Journal of Vacuum Science & Technology B 14, 4129-4133
(1996).
4. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G.
Willson, "Patterning curved surfaces: Template generation by ion beam
proximity lithography and relief transfer by step and flash imprint
lithography," Journal of Vacuum Science & Technology B 17, 2965-2969
(1999).
5. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C.
G. Willson, "Nanofabrication with step and flash imprint lithography,"
Journal of Microlithography Microfabrication and Microsystems 4, 01002,
1-6 (2005).
6. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, F.
Reuther, C. Schuster, M. Kubenz, G. Gruetzner, and C. M. S. Torres,
"Submicron three-dimensional structures fabricated by reverse contact
UV nanoimprint lithography," Journal of Vacuum Science & Technology
B 24, 3002-3005 (2006).
7. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C.
Schuster, M. Kubenz, F. Reuther, G. Gruetzner, and C. M. S. Torres,
"Reverse-contact UV nanoimprint lithography for multilayered structure
fabrication," Nanotechnology 18, 175303, 1-4 (2007).
8. X. Cheng, L. J. Guo, and P. F. Fu, "Room-temperature, low-pressure
nanoimprinting based on cationic photopolymerization of novel
epoxysilicone monomers," Advanced Materials 17, 1419-1424 (2005).
9. G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y.
Chen, W. M. Tong, and R. S. Williams, "Fabrication of a 34 x 34 crossbar
structure at 50 nm half-pitch by UV-based nanoimprint lithography,"
Nano Letters 4, 1225-1229 (2004).
108
10. H. Schift, "Nanoimprint lithography: An old story in modern times? A
review," Journal of Vacuum Science & Technology B 26, 458-480 (2008).
11. H. S. a. L. J. Heydermann, "Alternative Lithography," 47-57 (2003).
12. N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten,
and H. Kurz, "Improved mold fabrication for the definition of high quality
nanopatterns by soft UV-nanoimprint lithography using diluted PDMS
material," Microelectronic Engineering 84, 904-908 (2007).
13. M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S.
Kim, "Antiadhesion surface treatments of molds for high-resolution
unconventional lithography," Advanced Materials 18, 3115-3119 (2006).
14. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and
L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint
lithography," Microelectronic Engineering 61-2, 441-448 (2002).
15. G. Y. Jung, Z. Y. Li, W. Wu, S. Ganapathiappan, X. M. Li, D. L. Olynick,
S. Y. Wang, W. M. Tong, and R. S. Williams, "Improved pattern transfer in
nanoimprint lithography at 30 nm half-pitch by substrate-surface
functionalization," Langmuir 21, 6127-6130 (2005).
16. H. Lee, and G. Y. Jung, "Full wafer scale near zero residual
nano-imprinting lithography using UV curable monomer solution,"
Microelectronic Engineering 77, 42-47 (2005).
17. S. Y. Hwang, H. Y. Jung, J. H. Jeong, and H. Lee, "Fabrication of
nano-sized metal patterns on flexible polyethylene-terephthalate
substrate using bi-layer nanoimprint lithography," Thin Solid Films 517,
4104-4107 (2009).
18. H. Y. Jung, S. Y. Hwang, B. J. Bae, and H. Lee, "Lift-off process using
bilayer ultraviolet nanoimprint lithography and
methacryloxypropyl-terminated-polydimethylsiloxane-based imprint
resin," Journal of Vacuum Science & Technology B 27, 1861-1864 (2009).
19. J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, "Two-polymer
microtransfer molding for highly layered microstructures," Advanced
Materials 17, 2481-2485 (2005).
20. J. H. Lee, C. H. Kim, Y. S. Kim, K. M. Ho, K. Constant, W. Leung, and C.
H. Oh, "Diffracted moire fringes as analysis and alignment tools for
multilayer fabrication in soft lithography," Applied Physics Letters 86,
204101, 1-3 (2005).
21. J. H. Lee, C. H. Kim, Y. S. Kim, K. M. Ho, K. Constant, and C. H. Oh,
"Three-dimensional metallic photonic crystals fabricated by soft
lithography for midinfrared applications," Applied Physics Letters 88,
109
181112, 1-3 (2006).
22. J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, "Woodpile metallic
photonic crystals fabricated by using soft lithography for tailored
thermal emission," Advanced Materials 19, 791-794 (2007).
23. J. H. Lee, W. Leung, J. Ahn, T. Lee, I. S. Park, K. Constant, and K. M.
Ho, "Layer-by-layer photonic crystal fabricated by low-temperature
atomic layer deposition," Applied Physics Letters 90, 151101, 1-3 (2007).
24. J. H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.
M. Ho, "Polarization engineering of thermal radiation using metallic
photonic crystals," Advanced Materials 20, 3244-3247 (2008).
25. J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, "Polarized
thermal radiation by layer-by-layer metallic emitters with sub-wavelength
grating," Optics Express 16, 8742-8747 (2008).
26. H. X. Ge, W. Wu, Z. Y. Li, G. Y. Jung, D. Olynick, Y. F. Chen, J. A. Liddle,
S. Y. Wang, and R. S. Williams, "Cross-linked polymer replica of a
nanoimprint mold at 30 nm half-pitch," Nano Letters 5, 179-182 (2005).
27. M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J.
Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, "Guidelines for
etching silicon MEMS structures using fluorine high-density plasmas at
cryogenic temperatures," Journal of Microelectromechanical Systems 11,
385-401 (2002).
28. 龍文安, "半導體奈米技術," 五南圖書出版有限公司, 883-950 (2006).
29. H. XIAO, "半導體製程技術導論," 台灣培生教育出版股份有限公司,
221-253 (2006).
30. M. Quirk, and J. Serda, Semiconductor manufacturing technology
(Prentice Hall, Upper Saddle River, NJ, 2001).
31. M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park, and J. W.
Baldwin, "Cryogenic etch process development for profile control of
high aspect-ratio submicron silicon trenches," Journal of Vacuum
Science & Technology B 25, 21-28 (2007).
32. R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R.
Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson,
"Passivation mechanisms in cryogenic SF6/O-2 etching process,"
Journal of Micromechanics and Microengineering 14, 190-196 (2004).
33. H. Jansen, H. Gardeniers, M. deBoer, M. Elwenspoek, and J. Fluitman,
"A survey on the reactive ion etching of silicon in microtechnology,"
Journal of Micromechanics and Microengineering 6, 14-28 (1996).
34. E. Hecht, "OPTICS," 4ed. (Pearson Education, Inc., 2002), 476.
110
35. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P.
W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using
nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
36. J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and
L. Chen, "High-performance nanowire-grid polarizers," Optics Letters 30,
195-197 (2005).
校內:2014-02-18公開