簡易檢索 / 詳目顯示

研究生: 張肇明
Chang, Chao-Ming
論文名稱: 氣壓式紫外光奈米壓印微影技術暨奈米高深寬比矽結構製作之研究
UV nanoimprint lithography with a compressed air press and silicon nano structure fabrication with high aspect ratios
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 紫外光奈米壓印微影技術軟微影技術半導體製程技術電漿蝕刻技術光學偏振片
外文關鍵詞: UV nanoimprint lithography, soft lithography, semiconductor manufacturing technology, plasma etching technology, optical polarizer
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓印微影技術具有次世代極發展潛力的一項技術,本論文為研究紫外光
    奈米壓印微影技術,在壓印出圖形後進行電漿乾式蝕刻的製程。我們架設紫外光
    奈米壓印系統並改良光源架設,使得曝光時間能夠減少;使用複合式軟微影技術
    並測試適合壓印的條件,進一步比較紫外光阻劑中添加附著性提升的配方;我們
    以壓印定義出 1 微米的 1-D 週期結構當遮罩,然後成功蝕刻出 1 : 6 的深寬比結
    構。另一方面,本論文利用干涉式微影技術定義 500 奈米以下的小線寬結構,並
    測定出適合小線寬的高深寬比結構優化參數,討論反應式離子蝕刻系統與感應耦
    合式蝕刻系統在蝕刻製程上的差別。最後,我們製作出光學偏振元件,以簡易的
    模具複製方式和蒸鍍不同厚度的鋁金屬製作光學偏振片,並討論 s-PDMS、
    h-PDMS 和 NOA72 三種材料、不同蒸鍍金屬厚度對於偏振態的影響。

    Nanoimprint lithography (NIL) is a potential technology among the next generation lithographies. In this thesis, UV-NIL technology was investigated owing to its low temperature, high resolution, low cost, and easy process. We set up UV-NIL system with an improved output intensity of the UV source which can reduce the exposure time. A hybrid stamp was proposed to improve the imprinting uniformity.
    Three compositions of UV-NIL resists were compared. With an imprinted resist as the soft mask, an one-dimensional (1D) grating structure with a pitch of 1μm and an aspect ratio of 6 was successfully fabricated on the silicon substrate. One the other hand, we investigate the optimal fabricating parameters of the inductively coupled plasma (ICP) etching for the pattern pitch smaller than 500 nm. The patterns were defined with the interferometric lithography in the SU-8 resists. The highest aspect ratio we obtained was 10.9 on the silicon substrate. Furthermore, the high aspect ratio
    silicon structure was used as the mold to fabricate the wire-grid polarizer.

    目錄 Abstract ................................................ I  摘要.................................................... II  致謝................................................... III  目錄..................................................... V  表目錄......................................... VIII  圖目錄.................................................. IX  第一章  緒論..................................................... 1  1.1 前言................................................. 1  1.2 論文架構................................... 2  第二章 建構紫外光奈米壓印微影技術及其製程發展............... 3  2.1 文獻回顧.............................................. 3  2.1.1 微影技術發展........................ 3  2.1.2  紫外光奈米壓印微影技術............................. 4  2.1.2.1 模具與光固化阻劑................................ 5  2.1.2.2 軟微影...................................... 7  2.2 研究動機..................................... 8  2.3 研究方法............................................. 8  2.3.1  矽模仁製作....................................... 8  2.3.2  紫外光奈米壓印系統建立............................ 10  2.3.2.1  壓印系統...................................... 10  2.3.2.2  紫外光源建構.................................... 11  2.3.2.3  PET 密封膜 ................................ 14  2.3.2.4  複合 h/s-PDMS/glass stamp 製作 ................. 15  2.3.3  材料製備..................................... 18  2.3.3.1  脫模劑材料................................ 18  2.3.3.2  紫外光固化阻劑................................. 19  2.3.3.3  NOA 系列的紫外光固化膠 ........................ 20  2.4 實驗結果與討論............................... 20  2.4.1  可撓曲光學板之壓印研究........................... 21  2.4.2  紫外光固化膠之多層堆疊............................ 22  2.4.3  壓印製程測定................................ 24  2.4.3.1 紫外光阻劑塗佈測定........................... 24  2.4.3.2 提升光固化阻劑附著矽基板的媒介............. 28  2.4.4  壓印技術定義蝕刻遮罩暨蝕刻結果..................... 31  2.4.4.1 反應式離子系統蝕刻結果......................... 31  2.4.4.2 反應式離子系統蝕刻結果討論.................. 34  2.4.4.3 感應耦合式系統蝕刻結果....................... 36  2.4.4.3.1 感應耦合式系統內建參數對於三種 soft mask 蝕刻結 果............................................ 36  2.4.4.3.2 感應耦合式系統適用小線寬優化參數的蝕刻結果.. 40  2.4.4.4 感應耦合式系統蝕刻結果討論.................... 43  2.4.4.4.1 感應耦合式系統內建參數對於三種 soft mask 蝕刻 結果討論 ....................................43  2.4.4.4.2 感應耦合式系統在高溫環境的蝕刻結果討論.......... 44  2.4.4.4.3 感應耦合式系統適用小線寬優化參數的蝕刻結果討論 45  2.5 結論............................................ 46  第三章 利用干涉式微影技術建立電漿乾式蝕刻製程............... 47  3.1 文獻回顧........................................ 47  3.1.1 乾式蝕刻的物理原理............................ 47  3.1.2 電漿蝕刻的蝕刻氣體................................ 48  3.1.3 蝕刻輪廓.......................................49 3.1.4 蝕刻輪廓與平均自由路徑............................ 49  3.1.5 蝕刻輪廓與高密度電漿................................ 50  3.1.6 高深寬比的兩種方法................................. 50  3.1.7 Cryogenic Etch 的異向蝕刻機制 ..................... 51  3.1.8 Oxford PlasmaLab 100 系統 ...................... 51  3.1.9 側壁鈍化層與參數調變................................ 54  3.1.10 側壁頓化層的機制研究............................... 57  3.2 研究動機..................................... 59  3.3 研究方法........................................ 61  3.4 實驗結果與討論.............................. 61  3.4.1 AZ5214 正光阻之大尺寸測試 ......................... 61  3.4.2 感應耦合式系統蝕刻實驗結果..................... 65  3.4.2.1 感應耦合式蝕刻系統內建參數調變.................... 65  3.4.2.2 側蝕輪廓參數最佳化.......................... 68  3.4.2.3 理想輪廓的氣體流量參數調變.................... 72  3.4.3 感應耦合式系統蝕刻實驗結果討論.................... 89  3.4.3.1 參數調變的優化制定................................ 89  3.4.3.2 理想輪廓的參數調變討論...................... 90  3.5 結論................................................ 93  第四章  利用電漿乾式蝕刻技術及軟微影技術製作光學偏振片............... 94  4.1 文獻回顧............................................. 94  4.1.1 光柵方程式.......................... 94  4.1.2 偏振片結構與光學特性的影響........................... 95  4.2 研究動機........................................ 96  4.3 研究方法............................................. 96  4.3.1 奈米級結構製作............................... 96  4.3.2 偏振片材料................................. 96  4.3.3 偏振片製作....................................... 97  4.4 實驗結果與討論...................................... 99  4.5 結論...................................... 103  第五章  結論......................................... 104  5.1 實驗總節....................................... 104  5.2 未來展望............................................ 105  Reference ............................................. 107 


    107
    Reference
    1. B. J. Lin, "Marching of the microlithography horses: Electron, ion,
    and photon: Past, present, and future," SPIE 6520, 652002, 1-15 (2007).
    2. "INTERNATIONAL TECHNOLOGY ROADMAP FOR
    SEMICONDUCTORSS 2009 EDITION LITHOGRAPHY,"
    http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Litho
    .pdf.
    3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint
    lithography," Journal of Vacuum Science & Technology B 14, 4129-4133
    (1996).
    4. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
    Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G.
    Willson, "Patterning curved surfaces: Template generation by ion beam
    proximity lithography and relief transfer by step and flash imprint
    lithography," Journal of Vacuum Science & Technology B 17, 2965-2969
    (1999).
    5. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C.
    G. Willson, "Nanofabrication with step and flash imprint lithography,"
    Journal of Microlithography Microfabrication and Microsystems 4, 01002,
    1-6 (2005).
    6. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, F.
    Reuther, C. Schuster, M. Kubenz, G. Gruetzner, and C. M. S. Torres,
    "Submicron three-dimensional structures fabricated by reverse contact
    UV nanoimprint lithography," Journal of Vacuum Science & Technology
    B 24, 3002-3005 (2006).
    7. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C.
    Schuster, M. Kubenz, F. Reuther, G. Gruetzner, and C. M. S. Torres,
    "Reverse-contact UV nanoimprint lithography for multilayered structure
    fabrication," Nanotechnology 18, 175303, 1-4 (2007).
    8. X. Cheng, L. J. Guo, and P. F. Fu, "Room-temperature, low-pressure
    nanoimprinting based on cationic photopolymerization of novel
    epoxysilicone monomers," Advanced Materials 17, 1419-1424 (2005).
    9. G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y.
    Chen, W. M. Tong, and R. S. Williams, "Fabrication of a 34 x 34 crossbar
    structure at 50 nm half-pitch by UV-based nanoimprint lithography,"
    Nano Letters 4, 1225-1229 (2004).


    108
    10. H. Schift, "Nanoimprint lithography: An old story in modern times? A
    review," Journal of Vacuum Science & Technology B 26, 458-480 (2008).
    11. H. S. a. L. J. Heydermann, "Alternative Lithography," 47-57 (2003).
    12. N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten,
    and H. Kurz, "Improved mold fabrication for the definition of high quality
    nanopatterns by soft UV-nanoimprint lithography using diluted PDMS
    material," Microelectronic Engineering 84, 904-908 (2007).
    13. M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S.
    Kim, "Antiadhesion surface treatments of molds for high-resolution
    unconventional lithography," Advanced Materials 18, 3115-3119 (2006).
    14. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and
    L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint
    lithography," Microelectronic Engineering 61-2, 441-448 (2002).
    15. G. Y. Jung, Z. Y. Li, W. Wu, S. Ganapathiappan, X. M. Li, D. L. Olynick,
    S. Y. Wang, W. M. Tong, and R. S. Williams, "Improved pattern transfer in
    nanoimprint lithography at 30 nm half-pitch by substrate-surface
    functionalization," Langmuir 21, 6127-6130 (2005).
    16. H. Lee, and G. Y. Jung, "Full wafer scale near zero residual
    nano-imprinting lithography using UV curable monomer solution,"
    Microelectronic Engineering 77, 42-47 (2005).
    17. S. Y. Hwang, H. Y. Jung, J. H. Jeong, and H. Lee, "Fabrication of
    nano-sized metal patterns on flexible polyethylene-terephthalate
    substrate using bi-layer nanoimprint lithography," Thin Solid Films 517,
    4104-4107 (2009).
    18. H. Y. Jung, S. Y. Hwang, B. J. Bae, and H. Lee, "Lift-off process using
    bilayer ultraviolet nanoimprint lithography and
    methacryloxypropyl-terminated-polydimethylsiloxane-based imprint
    resin," Journal of Vacuum Science & Technology B 27, 1861-1864 (2009).
    19. J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, "Two-polymer
    microtransfer molding for highly layered microstructures," Advanced
    Materials 17, 2481-2485 (2005).
    20. J. H. Lee, C. H. Kim, Y. S. Kim, K. M. Ho, K. Constant, W. Leung, and C.
    H. Oh, "Diffracted moire fringes as analysis and alignment tools for
    multilayer fabrication in soft lithography," Applied Physics Letters 86,
    204101, 1-3 (2005).
    21. J. H. Lee, C. H. Kim, Y. S. Kim, K. M. Ho, K. Constant, and C. H. Oh,
    "Three-dimensional metallic photonic crystals fabricated by soft
    lithography for midinfrared applications," Applied Physics Letters 88,



    109
    181112, 1-3 (2006).
    22. J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, "Woodpile metallic
    photonic crystals fabricated by using soft lithography for tailored
    thermal emission," Advanced Materials 19, 791-794 (2007).
    23. J. H. Lee, W. Leung, J. Ahn, T. Lee, I. S. Park, K. Constant, and K. M.
    Ho, "Layer-by-layer photonic crystal fabricated by low-temperature
    atomic layer deposition," Applied Physics Letters 90, 151101, 1-3 (2007).
    24. J. H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.
    M. Ho, "Polarization engineering of thermal radiation using metallic
    photonic crystals," Advanced Materials 20, 3244-3247 (2008).
    25. J. H. Lee, W. Leung, T. G. Kim, K. Constant, and K. M. Ho, "Polarized
    thermal radiation by layer-by-layer metallic emitters with sub-wavelength
    grating," Optics Express 16, 8742-8747 (2008).
    26. H. X. Ge, W. Wu, Z. Y. Li, G. Y. Jung, D. Olynick, Y. F. Chen, J. A. Liddle,
    S. Y. Wang, and R. S. Williams, "Cross-linked polymer replica of a
    nanoimprint mold at 30 nm half-pitch," Nano Letters 5, 179-182 (2005).
    27. M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J.
    Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, "Guidelines for
    etching silicon MEMS structures using fluorine high-density plasmas at
    cryogenic temperatures," Journal of Microelectromechanical Systems 11,
    385-401 (2002).
    28. 龍文安, "半導體奈米技術," 五南圖書出版有限公司, 883-950 (2006).
    29. H. XIAO, "半導體製程技術導論," 台灣培生教育出版股份有限公司,
    221-253 (2006).
    30. M. Quirk, and J. Serda, Semiconductor manufacturing technology
    (Prentice Hall, Upper Saddle River, NJ, 2001).
    31. M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park, and J. W.
    Baldwin, "Cryogenic etch process development for profile control of
    high aspect-ratio submicron silicon trenches," Journal of Vacuum
    Science & Technology B 25, 21-28 (2007).
    32. R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R.
    Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson,
    "Passivation mechanisms in cryogenic SF6/O-2 etching process,"
    Journal of Micromechanics and Microengineering 14, 190-196 (2004).
    33. H. Jansen, H. Gardeniers, M. deBoer, M. Elwenspoek, and J. Fluitman,
    "A survey on the reactive ion etching of silicon in microtechnology,"
    Journal of Micromechanics and Microengineering 6, 14-28 (1996).
    34. E. Hecht, "OPTICS," 4ed. (Pearson Education, Inc., 2002), 476.



    110
    35. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P.
    W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using
    nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005).
    36. J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and
    L. Chen, "High-performance nanowire-grid polarizers," Optics Letters 30,
    195-197 (2005).

    無法下載圖示 校內:2014-02-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE