| 研究生: |
王崇宇 Wang, Chung-Yu |
|---|---|
| 論文名稱: |
異質性分類現象之檢驗:單一或多元類別表徵模型 Examination of Heterogeneous Categorization Phenomenon: Single V.S. Multiple Category Representation Models |
| 指導教授: |
楊立行
Yang, Lee-Xieng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 認知科學研究所 Institute of Cognitive Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 異質性分類表徵 、SUSTAIN 、ATRIUM |
| 外文關鍵詞: | ATRIUM, SUSTAIN, Heterogeneous category representation |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從過去的類別研究一直發展至今,現行有主要的兩大分類理論:範例表徵理論與
規則表徵理論。兩大分類理論皆假定同一類別空間中的所有刺激皆會被相同的類別表
徵所處理,將類別表徵視為是同質性的,但是在Aha & Goldstone(1992),Erickson &
Kruschke(1998)以及Yang & Lewandowsky(2004)中,觀察到了人類在分類上所
表現出來的異質性分類現象,指的是在同一類別空間中的刺激,可以被不同的類別表
徵所處理。這個發現挑戰了傳統類別理論中的同質性假定,這些研究也發現傳統的類
別模型並沒有辦法解釋異質性類別實驗的結果,在本研究中以上述三個實驗的結果在
兩個具有潛力表現出異質性分類現象的異質性模型上進行檢驗,其中一個是具有多重
類別模組的ATRIUM,另一個是以彈性化單一表徵建構的SUSTAIN。檢驗結果發現
ATRIUM 可以成功的解釋三個實驗中的異質性分類現象,主要原因是因為ATRIUM
具有多重的類別表徵模組,且可以在不同的刺激上調整模組的使用比率。SUSTAIN
則只能有限的表現出異質性分類現象,雖然SUSTAIN 具有彈性化的演算模式,仍會
受到其單一表徵基礎的影響,同時也發現了SUSTAIN 會在相當程度上受到學習順序
的影響。然而從SUSTAIN 對Erickson & Kruschke(1998)實驗的模擬結果中發現,
其實驗中的規則表徵現象可能其實是範例的作用所導致,並且本研究在修改後的實驗
中發現,受試者可能是基於範例的影響而在Erickson & Kruschke(1998)實驗中表現
出規則表徵的現象,此外,電腦模擬結果說明SUSTAIN 會受到注意力調幅值的大小
影響,而產生相似度扭轉的現象。綜合來說,多重表徵模型對異質性分類現象的解釋
力要優於單一表徵模型,這也確立了多重表徵在建構分類模型時的必要性。
Now days, there are two major category representation theories in research of
categorization: Exemplar-based theory and Rule-based theory. Those two theories both
assume that in one single category space, all stimuli would be represented by the same
category representation. This kind of assumption treats category representation as
homogeneous. However in three category research: Aha & Goldstone (1992), Erickson &
Kruschke (1998) and Yang & Lewandowsky (2004), the author found the heterogeneous
phenomena in human categorization behaviors, the word “heterogeneous” means that the
stimuli in one single category space may be represented by different category
representations. This founding challenges the homogeneous assumption in traditional
category theory. Those researchers also found that traditional category model can’t
accommodate the result of category experiments. In this research, we select two category
models that have potential to accommodate the result of heterogeneous categorization
experiments and test the performances of these two models in three heterogeneous
categorization experiments. One of the two models is ATRIUM which build-in multiple
category modules, the other is SUSTAIN which has single but flexible category
representation. The result shows that ATRIUM can accommodate the result of three
experiments well, because ATRIUM able to use different category modules in
categorization process and adjust the ratio of modules’ output value. SUSTAIN can only
perform the limited result of the experiments. It means that even the structure of SUSTAIN
is flexible, it still limited by the assumption of single category representation. Another
finding is that SUSTAIN is affected by the learning sequence. According to the result of
SUSTAIN fit the Erickson & Kruschke (1998), the phenomenon of rule-based
representation might due to the effect of learning example. After modify the category space
in the experiment, we found out that the phenomenon of rule-based representation in
original experiment might due to the example in learning phase but not rule representation.
Also, SUSTAIN’s simulation result of the modified experiment shows that SUSTAIN
might affect by attention tuning and twists the similarity of stimuli. Summarize, the
performance of multiple category representations model is better than single category
representation model, this finding also certain the necessary of multiple category
representations in model fabrication.
楊立行。(民96)認知模擬在類別學習上的應用:以Yang & Lewandowsky (2003)之
研究為例。中華心理學期刊,49卷,3期,285-300。
Aha, D. W., & Goldstone, R. (1992). Concept learning and flexible weighting. In J. K.
Kruschke (Ed.), Proceedings of the Fourteenth Annual Conference of the Cognitive
Science Society (pp. 534-539). Hillsdale, NJ: Erlbaum.
Ashby, F. G., & Townsend, J. T. (1986). Varieties of Perceptual Independence.
Psychological Review, 93(2), 154-179.
Ashby, F. G., & Gott, R. (1988). Decision rules in the perception and categorization of
multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory,
and Cognition. 14, 33-53.
Ashby, F. G., & Maddox, W. T. (1990). Integrating information from separable
psychological dimensions. Journal of Experimental Psychology: Human Perception
and Performance, 16, 598-612.
Ashby, F. G., & Alfonso-Reese L. A., Turken, U., Waldron, E. M. (1998). A
Neuropsychological Theory of Multiple Systems in Category Learning.
Psychological Review, 105(3), 442-481.
Ashby, F. G., & O'Brien, J. B. (2005). Category learning and multiple memory systems.
85
TRENDS in Cognitive Sciences, 9(2), 83-89.
Erickson, M. A., & Kruschke, J. K. (1998). Rules and Exemplars in Category Learning.
Journal of Experimental Psychology: General, 127(2), 107-140.
Flannagan, M. J., Fried, L. S., & Holyoak, K. J. (1986). Distributional Expectations and the
Induction of Category Structure. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 12(2), 241-256.
Gluck, M. A., & Bower, G. H. (1988b). From conditioning to category learning: An
adaptive network model. Journal of Experimental Psychology: General, 117.
227-247.
Homa, D., & Chambliss, D.. (1975). The Relative Contributions of Common and
Distinctive Information on the Abstraction from Ill-Defined Categories. Journal of
Experimental Psychology, 104(4), 351-359.
Homa, D., Cross, I. J., Cornell, D., & Goldman, D., Shwartz, H. (1973). Prototype
abstraction and classification of new iinstances as a function of number of instances
defining the prototype. Journal of Experimental Psychology, 101(1), 116-122.
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation, 3, 79-87
Katz, J. J., & Fodor, J. A. (1963). The structure of semantic theory. Language, 39,
86
170-210.
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category
learning. Psychological Review, 99, 22–44.
Love, B. C., Medin, D. L., & Gureckis, T. (2004). SUSTAIN: A network model of human
category learning. Psychological Review, 111, 309-332.
Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. Westport, Conn.:
Greenwood Press.
Malt, B. C., & Smith, E. E. (1983). Correlated properties in natural categories. Journal of.
Verbal Learning and Verbal Behavior, 23, 250-269..
McCloskey, M., & Glucksberg, S. (1978). Natural categories: Well defined or fuzzy-sets?
Memory and Cognitive. 6:462-72
McKinley, S. C., & Nosofsky, R. M. (1996). Selective attention and the formation of linear
decision boundaries. Journal of Experimental Psychology: Human Perception &
Performance, 22, 294-317.
Medin. D. L., & Schaffer, M. M. (1978). Context theory of classification learning.
Psychological Review, 85, 207-238.
Medin, D. L., & Smith, E. E. (1981). Concepts and concept formation. Annual Reviews of
87
Psychology, 35, 113-138.
Medin, D. L., & Schwanenflugel, P. J. (1981). Linear Separability in Classification
Learning. Journal of Experimental Psychology: Human Learning and Memory,
7(5), 355-368.
Medin,D.L., & Edelson, S. M., Freko, D. (1982). Correlated Symptoms and Simulated
Medical Classification. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 8(1), 14.
Nosofsky, R. M. (1986). Attention, similarity,.and the identificationcategorization
relationship. Journal of Experimental Psychology: General 115, 39-57.
Nosofsky, R. M. (1987). Attention and learning processes in the identification and
categorization of integral stimuli. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 13, 87-108.
Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989). Rules and exemplars in categorization,
identification, and recognition. Journal of Experimental Psychology: Learning.
Memory, and Cognition. 15. 282-304.
Nosofsky, R. M., Kruschke, J. K., & McKinley, M. C. (1992). Combining Exemplar-Based
Category Representations and Connectionist Learning Rules. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 18(2), 211-233.
88
Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-Plus-Exception Model of
Classification Learning. Psychological Review, 101(1), 53-79.
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of
Exprimental Psychoog,.77:353-63
Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental
Psychology, 83(2), 304-308.
Poggio, W. H., & Girosio, F. (1990). A Theory of Networks for learning. Science, 247,
978-982.
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal
structure of categories. Cognitive Psychology, 7, 573-605.
Rosch, E., & Lloyd, B. B., (Eds.). (1978). Cognition and Categorization. Hillsdale, NJ:
Erlbaum
Rouder, J. N., & Ratcliff, R. (2004). Comparing Categorization Models. Journal of
Experimental Psychology: General, 133(1), 63-82.
Rouder, J. N., & Ratcliff, R. (2006). Comparing Exemplar- and Rule- Based Theories of
Categorization. Current Directions In Psychological Science, 15(1).
Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model
relating generalization to distance in psychological space. Psychometrika,
22,325-345.
89
Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and memorization of
classifications. Psychological Monographs. 75(13, Whole No. 517).
Strange, W., Keeney, T., Kessel, F. S., Jenkins, J. J. (1970). Abstraction over time of
prototypes from distortions of random dot patterns:. Journal of experimental
psychology, 83(3), 508-510.
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON
Convention Record (p. 96-104). New York.
Yang, L. X., & Lewandowsky, S. (2004). Context-gated knowledge partitioning in
categorization. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 30, 1045-1064.