簡易檢索 / 詳目顯示

研究生: 柯佩君
Ko, Pei-Chun
論文名稱: 非定常矩形截面凸狀物之三維回覆再接觸現象
Three-Dimensional Unsteadiness of Flow Reattachment over a Surface-mounted Rectangular Block
指導教授: 鄭金祥
Cheng, C. H.
苗君易
Miau, Jiun-jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 回覆再接觸分離層擺盪現象三維非定常特性熱絲感測組
外文關鍵詞: reattachment, shear layer flapping motion, MEMS thermal tuft sensor, three-dimensional unsteadiness
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於以長時間的實驗數據統計方式探討流體流經一矩形截面凸狀物回覆再接觸現象。將模型置於距風洞入口端後方10H處,實驗於ReH為3.02×104,凸狀物寬高比為4,使用熱絲觀念(Thermal Tuft)的量測方式,以統計方法找出長時間120秒之擾動差分值(Deviations Value),其值為正規化溫度後反相位訊號的時間點,在此時間點擾動差分值皆為負值,且為回覆再接觸點於發生的時間點縮短往上游移動的表徵,透過這些時間點與熱線測速儀的訊號交互相關性分析(Cross Correlation),以數據統計結果探討回覆再接觸擺盪現象的所造成渦流拉伸潰散,於矩形凸狀物流場中三維非定常現象的影響。
    實驗結果發現回覆再接觸區發生在距凸狀物前緣3.2H~3.4H之間,以溫度感測器經由訊號百分比分析,得回覆再接觸點(Reattachment Point)在3.32H處。且長時間對溫度感測器正規化溫度後反相位訊號的統計結果可發現流體受分離剪流層影響而造成物體表面上壁迴流區隨著流量的不平衡,膨脹縮小造成回覆再接觸區有一個低頻非周期來回擺盪行為,一秒內的擺盪次數約為14.2次,其無因次化頻率St為0.05。而藉由相關性分析可得於接近壁面Y=0.2處,在低頻擺盪發生時,短時間渦流的速度分佈情形顯示溫度感測器與熱線測速儀在同一手指結構中,其手指結構大小約為1H。當分離剪流層曲率增加回覆再接觸點往前移動的瞬間,流場的三維效應相當的明顯,而反相位訊號發生時,熱線測速儀在X-Y及X-Z方向所量測到U速度之相關性係數的結果不相同,且於迴流區中U、V、W動量傳遞增加,由此可知流場呈現出三維非定常結構。

    This study is intended using the long time experiment data to investigate the three-dimensional, unsteady behavior of flow reattachment over a surface-mounted rectangular block. The model was located behind the wind tunnel flow inlet at10H and the ratio of width versus height of the block is equal 4 for the Reynolds number at 3.02×104. The experiment was carried out using the self-made MEMS thermal films sensor and thermal tuft method to measure the span-wise direction on the surface-mounted find out the long time deviations value at Y=0.2H, the out-phase signal after the normalized temperature value, whose the instantaneous flapping motion at the reattachment zone. The purpose of this study is to quantify the characteristics of the three-dimensional unsteady the instantaneous flapping motion and the vortex structure of a simple rectangular block at the reattachment zone by mean of cross correlation analysis.
    It is found that the reattachment length is 3.2H~3.4H and the reattachment point is 3.32H by the signal percentage analysis. To statistics the long time deviations value of the temperature sensor signal, there was a low-frequency aperiodicity instantaneous flapping motion of the reattachment zone because of the inversed pressure gradient effect on the separate shear layer, the mean of frequency about 14.2 by a second and the Strouhal number, St, is 0.05. Cross correlation analysis of the signal between the deviations value of the temperature sensor and the ×-type hot-wire signal, it has been found that the characteristic span-wise lengths of the three-dimensional flow structures about 1H. And further noted that the unsteady behaviors of the reattachment out-phase signal occurred, the instantaneous velocity distribution X-Y and X-Z of the hot-wire signal show a different trend, which are considering the strong momentum transfer at the recirculation zone.

    摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 回覆再接觸現象 2 1.2.2 MEMS 熱膜感測器 7 1.3 論文架構 9 第二章 基礎理論 10 2.1 低速循環式風洞 10 2.2 矩形截面凸狀物模型 10 2.3 感測系統 11 2.3.1 壓力轉換計 11 2.3.2 熱線測速儀感測系統(Hot-wire Anemometer) 11 2.3.3 MEMS熱膜感測器 12 2.4 資料擷取系統 14 2.4.1 IOTech ADC-488/8SA 資料擷取系統 14 2.4.2 NI DAQ PCI-6143資料擷取系統 15 第三章 實驗方法與步驟 17 3.1 矩形截面凸狀物流場之量測 17 3.1.1 流場速度分佈與風洞入口流場品質 17 3.2 應用熱絲感測器(Thermal Tuft Sensor)之訊號分析 18 3.2.1 熱絲感測器於回覆再接觸之訊號分析 18 3.2.2 溫度感測器於反相位(Out-phase Signal)訊號分析 20 3.3 溫度感測器與熱線測速儀之相關性分析 22 第四章 實驗結果與討論 25 4.1 溫度感測器之訊號分析結果 25 4.1.1 回覆再接觸現象 25 4.2 分離剪流層影響回覆再接觸行為 26 4.3 熱線測速儀之訊號分析結果 28 4.4 回覆再接觸與手指結構之相關性分析 30 第五章 結論與建議 34 5.1 結論 34 5.2 未來工作與建議 36 參考文獻 38

    Abdalla, A.I., Cook, M.J., and Yang, Z., 2007, “Numerical Study of Transitional Separated-Reattached Flow over Surface-mounted Obstacles Using Large-eddy Simulation,” Int. J. Numeric. Meth. Fluids Vol. 54, pp. 175-206.
    Abu-Mulaweh, H.I., Armaly, B.F., and Chen, T.S., 1993, ‘‘Measurements of Laminar Mixed Convection Flow over a Horizonal Forward-facing Step,’’ J. Theomorphic. Heat Transf. Vol. 7, pp. 569-573.
    Abu-Mulaweh, H.I. , 2005, ‘‘Turbulent Mixed Convection Flow over a Forward-facing Step-The Effects of Step Heights,’’ Int. J. Therm Sci 44, pp.155-162.
    Adams, E.W., and Johnston, J.P., 1985., ‘‘Effect of the Upstream Boundary Layer Thickness and State on the State on the Structure of Reattaching Flows,’’ 5th, Ithaca, NY, August 7-9 Proceedings. University Park, PA, Pennsylvania State University, pp. 5.1-5.6
    Adams, E.W., and Johnston, J.P., 1988, ‘‘Effect of the Separating Shear Layer on the Reattachment Flows Structure. Part2: Reattachment length and wall shear layer,’’ Experiments in Fluids, Vol. 6, pp. 493-499.
    Alam, M., and Sandham, N.D., 2000, ‘‘Direct Numerical Simulation of 'Short' Laminar Separation Bubbles with Turbulent Reattachment,’’ J. Fluid Mech., Vol. 403, pp. 223-250.
    Back, L.H., and Roshke, E.J.,1972, ‘‘Shear-layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion,’’ J. Appl.Mech. Vol. 94, pp. 677-781.
    Bergeles, G., and Athanassiadis, N., 1983, ‘‘the Flow Pass a Surface Mounted Obstacle,’’ Journal of Fluid Engineering (ASEM) Vol. 105, pp. 461-463.
    Bradshaw, P., and Wong, F.Y.F., 1972, ‘‘the Reattachment and Relaxation of a Turbulent Shear Layer,’’ Journal of Fluid Mechanics, Vol. 52, pp. 113-135.
    Brown, S.B., Arsdell, W.V., and Muhlstein, C.L., 1997, ‘‘Materials Reliability in MEMS Devices,’’ IEEE, pp. 591-593.

    Chen, Y.M., and Wang, K.C., 1996, “Simulation and Measurement of Turbulent Heat Transfer in a Channel with a Surface-Mounted Rectangular Heated Block,” Heat and Mass Transfer, Vol. 31, pp. 463-473.
    Cheng, T.S., and Yang, W.J., 2008, ‘‘Numerical Simulation of Three Dimensional Turbulent Separated and Reattaching Flows Using a Modified Turbulence Model,’’ Computer and Fluids, Vol. 37, pp 246-258.
    Driver, D.M., Seegmiller, H.L., and Marvin, J.G., 1987, ‘‘Time Dependent Behavior of a Reattaching Shear Layer’’, AIAA, Vol. 25, pp. 914-919.
    Djilali, N., 1994, ‘‘Forced Laminar Convection in an Array of Stacked Plates,’’ Numerical Heat Transfer, Part A, Vol. 25, pp. 393–408.
    De Brederode, V., and Bradshaw, P., 1972, ‘‘Three-Dimension Flow in Nominally Two-Dimensional Separation Bubbles. I. Flow Behind a Rearward-Facing Step,’’ Imperial College, Aeronautical Rept.
    Eaton, J.K., and Johnston, J.P., 1981, “A Review of Research on Subsonic Turbulent Flow Reattachment,’’ AIAA Journal, Vol. 19, pp. 1093-1100.
    Eaton, J.K., and Song, S., 2004, “ Reynolds Number Effects on a Turbulent Boundary Layer with Separation, Reattachment, and Recovery,’’ Experiments in Fluids, Vol. 36, pp. 246–258.
    Ho, C.M., and Tai, Y.C., 1998, “Micro-Electro-Mechanical-System (MEMS) and Fluid Flows,” Annual. Reviews Inc., Vol. 30, pp. 579–612.
    Huang, J. B., Ho, C. M. and, Jaing F., 1998, “Dynamic Behavior and Application of Micro Sensors with Negative Temperature Coefficient,” Proc. of Instrumentation and Measurement Technology Conference, Pasadena, pp. 1191-1194.
    Iwai, H., Nakabe, K., and Suzuki, K., 2000, “Flow and Heat Transfer Chatacteristics of Backward-facing Step Laminar Flow in a Rectangular Duct”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 457-471.
    Kim, K.C., Ho, S.J., and Seong, S.H., 2003, “Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layer”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, pp. 653-669.
    Kiya, M., and Sasaki, K., 1983, ‘‘Structure of a Turbulent Separation Bubble,” J. Fluid Mech., Vol. 137, pp. 83-113.
    Kuehn, D.M., 1980, ‘‘Effect of Adverse Pressure Gradient on the Incompressible Reattaching Flow over a Rearward-Facing Step,” AIAA Journal, Vol. 18, pp. 343-344.
    Lee, G.B., Wu, J.H., and Miau, J.J., 2002, “A New Fabrication Process for a Flexible Skin with Temperature Sensor Array,” Journal of the Chinese Institute of Engineers, Vol. 25, pp. 619-625.
    Lee, T., and Mateescu, D., 1998, “Exerimental and Numerical Investigation of 2-D Backward-facing Step Flow,” Journal of Fluid and Structures, Vol.12, pp. 703-716.
    Menendez, A.N., and Ramapriant, B.R., 1985, “The Use of Flush-Mounted Hot-Film Gauges to Measure Skin Friction in Unsteady Boundary Layers,” J. Fluid Mech., Vol. 161, pp. 139-159.
    Olson, S.D., and Thomas, F.O., 2004, “Quantitative Dection of Turbulent Reattachment Using a Surface Mounted Hot-film Array,” Experiments in Fluids, Vol. 24, pp. 75-79.
    Ota, T., Asano, Y., and Okawa, J., 1981, “Reattachment Length and Transition of Separated Flow over Blunt Flat Plate,” Bull. JSEM, Vol. 94, pp. 941-947.
    Patel, R.P., 1978, “Effects of Stream Turbulence on Free Shear Flows,”Aeronautical Quarterly, Vol. 29, pp. 1-17.
    Perry, A. E., 1982, “Hot-Wire Anemometry,’’ Oxford University Press.
    Piccini, E., Guo, S.M., and Jones, T.V., 2000, “The Development of a New Direct-Heat-Flux Gauge for Heat-Transfer Facilities,” Meas. Sci. Technol. Vol. 11, pp. 342–349.
    Pronchick, S., and Kline, S., 1983, “An Experimental Investigation of the Structure of a Turbulent Reattaching Flow Behind a Backward-facing Step”, Stanford University, Mechanical Engineering Dept, MD-42.
    Ruderich, R., and Fernkolz, H. H., 1986, “An Experimental Investigation of a Turbulent Shear Flow with Separation, Reverse Flow, and Reattachment”, J. Fluid Mech., Vol. 163, pp. 283-322.

    Wang, K.C., and Chen, W.R., 2006, “An Experimental Investigation of the Turbulence Structure of a Block-Mounted Rectangular Channel Flow,” Journal of Science and Engineering Technology, Vol. 2, pp. 9-20.
    Wark, C., Özkol, Ü., and Fabris, D., 2007, “Mean and Fluctuating Velocity Characteristics of a Separated Shear Layer Past a Surface Mounted Block,” Journal of Fluids Engineering, Vol. 129, pp. 200-208.
    Yang, Z., and Absalla, I.E., 2005, “Effects of free-stream turbulence on large-scale coherent structures of separated boundary layer transtition,” International Journal for Numerical Method in Fluid, Vol. 49, pp. 331-348.
    Yanaoka, H., Yoshikawa, H., and Ota, T., 2002, “Numericial Simulation of Laminar Flow and Heat Transfer over a Blunt Flat Plate in Square Channel,” Transcaction of the ASEM, Vol. 124, pp. 8-16.
    Zdravkovich, M.M., 1997, “Flow Around Circular Cylinder,” Vol. 1: Fundamentals, Oxford University Press.
    杜榮國,2003,“MEMS熱膜感測器之製造及其應用於流場量測之特性”,成功大學航太所碩士論文。
    曹榮峻,2006,“應用MEMS熱膜感測器與液晶式流探討矩形截面凸狀物之回覆再接觸現象”,成功大學航太所碩士論文。
    蘇詩媛,2008,“應用MEMS熱膜感測器探討不同邊界條件下矩形截面凸狀物非定常回覆再接觸現象”,成功大學航太所碩士論文。

    下載圖示 校內:2010-08-21公開
    校外:2010-08-21公開
    QR CODE