簡易檢索 / 詳目顯示

研究生: 林郁芳
Lin, Yu-Fang
論文名稱: 以磁性共沉澱法及流體化床均質結晶技術回收廢水中的鍶
Strontium recovery from synthetic wastewater by magnetic co-precipitation and fluidized-bed homogeneous crystallization technology
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 共沉澱磁鐵礦流體化床均質結晶碳酸鍶
外文關鍵詞: coprecipitation, Magnetite, Fluidized-bed crystallization, Strontium carbonate
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著核電廠和核實驗室操作的發展,放射性汙染物釋放到環境中的來源亦增加,而Sr-90為重要的核分裂產物之一,若不經適當處理則可能嚴重破壞環境生態,也對人體造成健康的危害。本研究分別以磁性共沉澱法與流體化床均質結晶(FBHC)技術,回收廢水中的鍶離子(1000 ppm),並尋求所開發技術之最適化條件。
    共沉澱法為添加亞鐵離子於含鍶模擬廢水中,在控制水中溶氧及鹼性環境下,產生具磁性的粉末,結果顯示在60 ℃以下反應的沉澱物為Fe3O4與SrCO3的混合物,具相當均勻性的共沉澱作用,且有利於後續固液分離。在空氣系統中,最適化條件為Fe(II)/Sr=1.2、Q=4 L/ min、pHr=10.0、T=60 ℃下,鍶去除率可達99.9 %以上;而在CO2系統中,Sr去除率在有無加入亞鐵時便具有極佳的去除效果。
    在FBHC系統中,在控制反應器出流pHe為9.45時,鍶去除率為96 %、結晶率達83 %為最適化條件;而系統的最高截面積負荷在1.91 kg-Sr/m2.hr,鍶去除率及結晶率分別為98.5 %及96.8 %,可有效地從模擬廢水中回收鍶而產出單一成分、高純度的白色碳酸鍶結晶珠。在SEM顯微觀察下,其顆粒內層與外層結構不同,外層晶粒較細緻,內層晶粒較大,是以汙泥團堆積而成。研究結果顯示,此兩種技術均可有效地去除水中的鍶離子並回收,產品分別為磁性的粉末(Fe3O4、SrCO3)以及非磁性的SrCO3結晶顆粒。

    Increased operation of nuclear power plants and nuclear laboratoriesare the source of radioactive wastes released into the environment. The radioactive contaminations like Strontium is the important nuclear fission products that are routinely or accidentally released. This research recoverd the strontium ions from synthetic wastewater and optimized the operation.
    Sr removal of 99.9 % was achieved with coprecipitation system at Fe(II)/Sr of 1.2, pH of 10, air flow rate of 4 L/min and temperature of 60 ℃. The product is the mixture of strontianite (SrCO3) and magnetite (Fe3O4) phase. In FBHC system, the results could be achieved the Sr removal efficiency of 96 % and the crystallization ratio of 83 % at the effulent pH of 9.45. Actual surface loading of FBHC system is around 1.91 kg-Sr/m2.hr. XRD analysis revealed that the crystal product is strontianite (SrCO3) phase. The surface morphology of SEM analysis revealed that strontium carbonate particles were formed by the aggregation of fine crystal. These two technologies can effectively remove Sr in aqueous solution and recover them as magnetic precipitates or crystal pellets.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究內容及目的 1 第二章 文獻回顧 2 2-1 鍶-90的介紹 2 2-2 放射性廢水之處理方法 3 2-2-1 含放射性廢水之處理方法 3 2-2-2 含鍶廢水之處理方法 5 2-3 鐵氧磁體結構、原理及應用 8 2-3-1 鐵氧磁體的結構 8 2-3-2 鐵氧磁體原理及應用 10 2-3-3 鍶鐵氧磁體介紹 11 2-3-4 鍶鐵氧磁體合成方法的文獻回顧 12 2-4 共沉澱法 13 2-5 流體化床均質結晶技術簡介 15 2-5-1 流體化床均質結晶技術之原理 15 2-5-2 結晶學 16 2-5-3 成核現象 19 2-5-4平衡濃度與過飽和 20 2-6 碳酸於水中的平衡關係 21 2-6-1 密閉系統碳酸根平衡關係 21 2-6-2 開放系統碳酸根平衡關係 22 2-6-3 鍶於碳酸水溶液中的性質 24 第三章 實驗設備、材料與方法 25 3-1 研究架構及流程 25 3-2 實驗設備 26 3-2-1 共沉澱法-曝氣裝置 26 3-2-2流體化床反應器 27 3-3 符號及公式定義 28 3-3-1 共沉澱法之符號定義 28 3-3-2 流體化床之符號及公式定義 28 3-4 實驗藥品 29 3-5 實驗步驟 30 3-5-1共沉澱法實驗 30 3-5-2流體化床均質結晶技術 30 3-6 水質分析儀器 31 3-6-1感應耦合電漿原子發射光譜儀 31 3-6-2總有機碳分析儀-無機碳分析 31 3-7 固體特性分析儀器 31 3-7-1掃描式電子顯微鏡-表面型態觀察 31 3-7-2 X光繞射分析儀-晶相分析 32 3-7-3能量分散光譜儀-表面元素分析 32 3-7-4 超導量子干涉震動磁量儀 33 第四章 結果與討論 34 4-1 利用磁性共沉澱法除鍶 34 4-1-1 Fe(II)/Sr莫耳比之影響 34 4-1-2控制溶液pHr值之影響 41 4-1-3系統恆定溫度之影響 43 4-1-4空氣曝氣流量之影響 45 4-1-5產物的磁性性質 46 4-1-6空白實驗-曝氣種類之影響 49 4-1-7二氧化碳系統之探討 50 4-2 以流體化床均質顆粒化技術處理含鍶廢水 53 4-2-1 pHeff對鍶去除率與結晶率之影響 53 4-2-2 截面積負荷對鍶去除率與結晶率之影響 55 4-2-3碳酸鍶結晶珠物性鑑定 57 第五章 結論與建議 61 5-1結論 61 5-2建議 62 參考文獻 63 附錄A 68 A-1 磁性共沉澱法曝氣管長度之篩選 68 附錄B 70 B-1 以FBHC技術合成碳酸鍶結晶珠之過程紀錄 70 B-2 以FBHC技術合成SrHPO4結晶珠 71

    1. S. Inan, H. Tel, and Y. Altas, "Adsorption studies of strontiumon hydrous zirconium dioxide," J. Radioanal. Nucl.Chem., vol. 267, pp. 615-621, 2006.
    2. P. Trivedi and A. Lisa, "A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides," J. Colloid Interf. Sci., vol. 218, pp. 554-563, 1999.
    3. J. Pan, X. Zou, Y. Yan, X. Wang, W. Guan, J. Han, et al., "An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(II)," Applied Clay Science, vol. 50, pp. 260-265, 2010.
    4. Q. Li, H. N. Liu, T. Y. Liu, M. Guo, B. J. Qing, X. S. Ye, et al., "Strontium and calcium ion adsorption by molecularly imprinted hybrid gel," Chem. Eng. J., vol. 157, 2010.
    5. 林培火, "福島核電廠事故與應變," 行政院原子能委員會輻射偵測中心2011.
    6. "日本福島第一核電廠放射性廢水目前處理概況," 2014.
    7. R. O. A. Rahman, H. A. Ibrahium, and Y.-T. Hung, "Liquid Radioactive Wastes Treatment: A Review," Water, vol. 3, pp. 551-565, 2011.
    8. Z. V. P. Murthy and S. Parmar, "Removal of strontium by electrocoagulation using stainless steel and aluminum electrodes," Desalination, vol. 282, pp. 63-67, 2011.
    9. R. Kamaraj and S. Vasudevan, "Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution," Chemical Engineering Research and Design, vol. 93, pp. 522-530, 2015.
    10. C.-H. Liu, Y.-J. Shih, Y.-H. Huang, and C.-P. Huang, "Kinetic and thermodynamic studies for adsorptive removal of Sr2+ using waste iron oxide," Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp. 914-920, 2014.
    11. S. Yusan and S. Erenturk, "Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent," World Journal of Nuclear Science and Technology, vol. 01, pp. 6-12, 2011.
    12. M. V. Balarama Krishna, S. V. Rao, J. Arunachalam, M. S. Murali, S. Kumar, and V. K. Manchanda, "Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent," Separation and Purification Technology, vol. 38, pp. 149-161, 2004.
    13. S. Y. Lee, K. H. Jung, J. E. Lee, K. A. Lee, S. H. Lee, J. Y. Lee, et al., "Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption," Bioresour Technol, vol. 172, pp. 449-52, Nov 2014.
    14. N. Panchal, Crystal Structure,Preparation techniques and Swift heavy ions irradiationirradiation, 2012.
    15. 蘇亮誌, "鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究," 碩士論文, 化學工程研究所, 國立成功大學, 2004.
    16. 胡威先, "結合Fenton及Ferrite Process處理電鍍廢水之研究," 碩士論文, 環境工程研究所, 國立中山大學, 2008.
    17. A. Collomb, B. Lambert-Andron, J. X. Boucherle, and D. Samaras, "Crystal Structure and Cobalt Location in the W-Type Hexagonal Ferrite [Ba]Co2-W," physica status solidi (a), vol. 96, pp. 385-395, 1986.
    18. A. Thakur, R. R. Singh, and P. B. Barman, "Crystallization Kinetics of Strontium Hexaferrite: Correlation to Structural,Morphological, Dielectric and Magnetic Properties," Electronic Materials Letters, vol. 8, pp. 595-603, 2012.
    19. "Characterization, Fabrication of Strontium Ferrite Thin Films and Their Applicability in Tunable BandStop Filter."
    20. Y.-P. Fu and C.-H. Lin, "Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process," Journal of Alloys and Compounds, vol. 386, pp. 222-227, 2005.
    21. T. T. V. Nga, N. P. Duong, T. T. Loan, and T. D. Hien, "Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12O19) by sol–gel method," Journal of Alloys and Compounds, vol. 610, pp. 630-634, 2014.
    22. S.-D. Kim and J.-S. Kim, "Magnetic properties of Sr-ferrites synthesized in molten (NaCl+ KCl) flux," Journal of Magnetism and Magnetic Materials, vol. 307, pp. 295-300, 2006.
    23. M. Jean, V. Nachbaur, J. Bran, and J.-M. Le Breton, "Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process," Journal of Alloys and Compounds, vol. 496, pp. 306-312, 2010.
    24. J. R. Liu, R. Y. Hong, W. G. Feng, D. Badami, and Y. Q. Wang, "Large-scale production of strontium ferrite by molten-salt-assisted coprecipitation," Powder Technology, vol. 262, pp. 142-149, 2014.
    25. H.-M. Lin, "奈米材料合成技術," Department of Materials Engineering Tatung University.
    26. S. G. Kore, V. Prasad, U.S.Singh, R.G.Yeotikar, A. Mishra, and S. S. Ali, "Removal of Ru along with Cs & Sr from the LLR Liquid Waste of Reprocessing Plant by Chemical Treatment Method."
    27. A. S. Jordi Bruno, "Radionuclide co-precipitation," Department of Inorganic Chemistry, The Royal Institute of Technology1987.
    28. K. Petcharoen and A. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method," Materials Science and Engineering: B, vol. 177, pp. 421-427, 2012.
    29. H. Iida, K. Takayanagi, T. Nakanishi, and T. Osaka, "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis," J Colloid Interface Sci, vol. 314, pp. 274-80, Oct 1 2007.
    30. J. P. Chen and H. Yu, "Lead removal from synthetic wastewater by crystallization in a fluidized‐bed reactor," Journal of Environmental Science and Health, Part A, vol. 35, pp. 817-835, 2000.
    31. 張華強, "以流體化床反應器系統開發均相成核與結晶的除磷技術," 碩士論文, 化學工程研究所, 國立成功大學, 2012.
    32. 吳品侖, "利用流體化床均質顆粒化技術以碳酸-溶氧去除水溶液中亞鐵之研究," 碩士論文, 化學工程研究所, 國立成功大學, 2014.
    33. C.-S. Chen, Y.-J. Shih, and Y.-H. Huang, "Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system," Chemical Engineering Journal, vol. 279, pp. 120-128, 2015.
    34. 劉志忠, "流體化床結晶法去除水中磷酸鹽之研究," 碩士論文, 環境工程研究所, 國立中央大學, 1997.
    35. J. A. Dirksen and T. A. Ring, "Fundamentals of crystallization: kinetic effects on particle size distributions and morphology," Chemical Engineering Science, vol. 46, pp. 2389-2427, 1991.
    36. 陳奇琳, "倒錐流體化結晶床水動力對結晶動力之影響," 資源環境工程所, 立德管理學院, 2006.
    37. 陳寶琪, "微溶物系之沉澱與結晶 " 博士論文, 化學工程研究所, 國立台灣大學, 1987.
    38. 陳政澤, "流體化床結晶反應槽回收廢水中重金屬鎘之研究," 碩士論文, 環境工程研究所, 國立中央大學, 1995.
    39. 李嘉宜, "以流體化床反應器處理含銅廢水之研究," 博士論文, 環境工程研究所, 國立台灣大學, 2005.
    40. 石政怡, "次成核的機構和其在結晶程序上之應用," 博士論文, 化學工程研究所, 國立台灣大學, 1996.
    41. A. E. Nielsen, Toft, and J.M., "Electrolyte crystal growth kinetics," Journal of Crystal Growth, vol. 67, pp. 278-288, 1984.
    42. J. J. M. W. Stumm, Aquatic Chemistry: John Wiley and Sons Inc., 1996.
    43. V. L. Snoeyink, D. Jenkin, and 李敏華, 水質化學(Water chemistry): 復漢出版社, 1992.
    44. O. V. Nipruk, Y. P. Pykhova, G. N. Chernorukov, N. S. Godovanova, and R. V. Abrazheev, "Heterogeneous equilibria in aqueous solutions of uranophosphates MII(PUO6)2•nH2O (MII = Mg2+, Ca2+, Sr2+, Ba2+)," Radiochemistry, vol. 53, pp. 474-482, 2011.
    45. E. Busenberg, L. N. Plummer, and V. B. Parker, "The solubility of strontianite (SrCO3) in CO2-H2O solutions between 2 and 91C, the association constants of SrHCO3+(aq) and SrCO3o(aq) between 5 and 80C,and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(cr) at 25C and 1 atm total pressure," Gcdtimica et Cosmochimica Acta, vol. 48, pp. 2021-2035, 1984.
    46. L. Simon, M. François, P. Refait, G. Renaudin, M. Lelaurain, and J.-M. R. Génin, "Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis," Solid State Sciences, vol. 5, pp. 327-334, 2003.

    無法下載圖示 校內:2020-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE