| 研究生: |
許毓彬 Hsu, Yu-Pin |
|---|---|
| 論文名稱: |
微渠道散熱器之熱分析與最佳化 Thermal Analysis and Optimization of Microchannel Heat Sink |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 微渠道散熱器 、最佳化 、反應曲面法 、全因子法 、基因演算法 |
| 外文關鍵詞: | microchannel heat sink, optimum, response surface methodology, full factorial design, genetic algorithm method |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討以矽做為基板並使用水為冷卻流體的矩形微渠道散熱器之三維不可壓縮層流流場與熱傳的數值模擬。在流體與固體區域皆以控制體積法求解那維爾-史托克方程式(Navier-Stokes equations)與共軛能量方程式。以QUICK法與SIMPLE法來離散動量方程式與能量方程式。本研究中,數值計算的參數範圍為50≦Re≦600, 0.05W≦P≦0.25W, 100W/cm2≦q"≦300W/cm2。
首先將模擬結果與文獻中可用的實驗數據做仔細的驗證,且應用了反應曲面法(response surface methodology)、全因子法(full factorial design)配合基因演算法(genetic algorithm method)來最佳化微渠道散熱器的幾何形狀。文中定義兩設計參數分別為渠道深度與總深度的比η(Hc/Hb+Hc),渠道寬度與總寬度的比ξ(Wc/Ww+Wc) 。在等熱通量與等泵浦功率的條件下,將微渠道散熱器的熱阻最小化,經由不同最佳化方法後的結果幾乎有一致最佳幾何形狀,基於最佳化結果,其最佳化情況為η=0.8和ξ=0.711。根據數值結果,進口熱阻隨著η增加而減少,但會隨著ξ增加而增加。另外平均紐賽數則隨著雷諾數或泵浦功率增加而變大。
Three-dimensional incompressible laminar fluid flow and heat transfer of a rectangular micro-channel heat sink is studied numerically using water as a cooling fluid in a silicon substrate. The control volume approach is developed for solving Navier-Stokes equations with conjugate energy equation for both fluid and solid regions. The QUICK and SIMPLE techniques are used for discretization of momentum and energy equations. In this studied, computations were performed for a range of 50≦Re≦600, 0.05W≦P≦0.25W, 100W/cm2≦q"≦300W/cm2.
Solutions are first carefully validated with available experimental results in the literature and the shape of the micro-channel is then optimization using response surface methodology, full factorial design and genetic algorithm method. Ratio of the depth of the micro-channel to the whole depth η(Hc/Hb+Hc) and the width of the micro-channel to the whole width ξ(Wc/Wb+Wc) are selected as design variables. The thermal resistance of a micro-channel is minimized for a constant heat flux and constant pumping power. The different optimum models yielded nearly the same optimum geometries. Based on the results derived by the optimization, the optimum condition is η=0.8 and ξ=0.711. According to the numerical results, the inlet thermal resistance decreases with increasing η but increases with increasing ξ in all cases. In addition, one can observes that averaged Nusselt number increases with increase in Reynolds number or pumping power.
Ambatipudi K. K., and Rahman M. M., “Analysis of conjugate heat transfer in microchannel heat sinks,” Numerical Heat Transfer, Part A, Vol. 37, pp. 711-731, 2000.
Bagley J.D., “The behavior of adaptive system which employ genetic and correlation algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
Chein R., Chen J., “Numerical study of the inlet/outlet arrangement effect on microchannel heat sink Performance, ” International Journal of Thermal Sciences, Vol. 48, pp. 1627-1638, 2009.
Davis L.D., “Handbook of genetic algorithms,” Van Nostrand Reinhold, 1991.
De Jong K.A., “An analysis of the behavior of a class of genetic adaptive systems,” PhD Dissertation, University of Michigan, No. 76-9381, 1975.
Fedorov A.G., Viskanta R., “Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, ” International Journal of Heat and Mass Transfer , Vol. 43,pp. 399-415, 2000.
Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
Husain A., and Kim K.Y., “Shape optimization of micro-channel heat sink for micro-electronic cooling,” IEEE Transaction on Components and Packaging Technologies, Vol. 31, No.2, pp. 322-330, 2008.
Hsieh S.S., Lin C.Y., Huang C.F.and Tsai H.H., “Liquid flow in a micro-channel, ” Journal of Micromechanics and Microengineering, Vol. 14, pp. 436-445, 2004.
Hsieh S.S., Lin C.Y., “Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces, ” International Journal of Heat and Mass Transfer, Vol. 52, pp. 260-270, 2009.
Kandlikar S.G., Joshi S., Tian S., “Effect of channel roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes”, in: Proceedings of 35th National Heat Transfer Conference, paper 12134, 2001.
Kawano K., Minakami K., Iwasaki H., Ishizuka M., “Development of microchannels heat exchanging, ” in: Proceedings of the ASME Heat Tranfer Division: Application of Heat Transfer in Equipment, Systems, and Education, Vol. 3, pp. 173-180, 1998.
Kim M. H., Bullard C. W., “Development of a microchannel evaporator model for a air-conditioning system,” Energy, Vol. 26, pp. 931-948, 2001
Knight R. W., Hall D. J., Goodling J. S., and Jaeger R. C., “Heat sink optimization with application to micro channels,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, pp. 832-842, 1992.
Koza J.R., “Genetic programming, on the programming of computers by means of natural Selection, ” MIT Press, 1992.
Kroeker C.J., Soliman H.M., Ormiston S.J., “Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4733-4744, 2004
Langhaar H.L., ”Steady flow in the transition length of a straight tube”, Journal of Applied Mechanics, Vol.9,pp. A55-A58, 1942.
Li J., Peterson G. P., and Cheng P., “Three-dimensional analysis of heat transfer in a micro heat-sink with single phase flow,” International Journal of Heat Mass Transfer, Vol. 47, pp. 4215-4231, 2004.
Li J. and Peterson G. P. “Bud”, “Geometric optimization of a micro heat sink with liquid flow,” IEEE Transaction on Components and Packaging Technologies,Vol. 29, No. 1, pp. 145-154, 2006.
Mlcak J.D., Anand N.K., Rightley M.J., “Three-dimensional laminar flow and heat transfer in a parallel array of microchannels etched on a substrate”, International Journal of Heat and Mass Transfer, Vol.51, pp. 5182-5191,2008
Montgomery D.C., Runger G.C., “Applied statistics and probability for engineers,” John Wiley & Sons, Inc, New York, 2007.
Patankar S.V., “Numerical Heat Transfer and Fluid Flow, ” New York: McGraw-Hill, pp. 124-134 , 1980.
Peng X.F., and Peterson G.P., “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Experimental Thermal and Fluid Science, Vol. 12, pp. 98-104, 1996.
Pong K., Ho C., Liu J., Tai Y., “Non-linear pressure distribution in uniform microchannels, ” in: Application of Microfabrication to Fluid Mechanics, in: ASME, Vol. 197, pp. 51-56, 1994
Qu W., Mala G.M., Li D., ”Pressure-driven water flows in trapezoidal silicon microchannels,” International Communications in Heat and Mass Transfer, Vol. 43, pp. 353-364, 2000.
Qu W., Mala G. M., Li D., “Heat transfer for water flow in trapezoidal silicon microchannels,” International Communications in Heat and Mass Transfer, Vol. 43, pp. 3925-3936, 2000.
Qu W., Mudawar I., “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, ” Internationl Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
Qu W., Mudawar I., “Analysis of three dimensional heat transfer in micro-channel heat sinks,” International Journal of Heat and Mass Transfer, Vol. 45, No. 19, pp. 3973-3985, 2002.
Rahman M.M., “Measurements of heat transfer in microchannel heat sinks, ” Internaternal Communication in Heat and Mass Transfer, Vol. 27 , pp. 495-506, 2000.
Samalam V. K., “Convective heat transfer in microchannels,” Journal of Electronic Materials, Vol. 18, pp. 611-617, 1989.
Shah R. K. and London A. L., “Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data,” New York: Academic, 1978.
Toh K.C., Chen X.Y., Chai J.C., “Numerical computation of fluid flow and heat transfer in microchannels, ” International Journal of Heat and Mass Transfer, Vol.45, pp.5133-5141,2002.
Tuckermann D.B., Pease R.F.W., “High-performance heat sinking for VLSI, ” IEEE Electronic Device Letters, pp. 126-129, 1981.
Tunc G., Bayazitoglu Y., “Heat transfer in rectangular microchannels,” International Communications in Heat and Mass Transfer, Vol. 45, pp. 765-773, 2002.
Wei X. and Joshi Y., “Optimization study of stacked micro-channel heat sinks for micro-electronic cooling,” IEEE Transaction on Components and Packaging Technologies, Vol. 26, No.1, pp. 55-61, 2003.
Weisberg A., Bau H. H., and Zemel J. N., “Analysis of micro channels for integrated cooling,” International Journal of Heat and Mass Transfer, Vol. 35, No. 10, pp. 2465-2474, 1992.
Wu H.Y., Cheng P., “An experimental study of convective heat transfer in silicon microchannels with different surface conditions, ” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2547-2556, 2003.
Wu H.Y., Cheng P., “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2519-2525, 2003.
Zhao C.Y., Lu T.J., “Analysis of microchannel heat sinks for electronics cooling,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 4857-4869, 2002.
Zhuo L., Tao W.Q., and He Y.L., “A numerical study of laminar convective heat transfer in microchannels with non-circular cross-section,” International Journal of Thermal Sciences, Vol. 45, pp. 1140-1148, 2006.
周明, 孫樹棟, 遺傳算法原理及應用(Genetic algorithms: theory and applications), 國防工業出版社,1999.
王亦婷,流體在微渠道流動之數值模擬,中山大學碩士論文,民92.
葉怡成, 高等實驗計畫法(Advanced design of experiments),五南圖書公司,2009.