| 研究生: |
洪偉豪 Hong, Wei-Hao |
|---|---|
| 論文名稱: |
髖關節發育異常之骨盆生物力學分析 Biomechanical Analysis of Malformed Pelvis of DDH |
| 指導教授: |
林啟禎
Lin, Chii-Jeng 張志涵 Chang, Chih-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 脫位 、步態分析 、有限元素法 、關節力 、生物力學 、髖關節發育異常 、異常 、髖關節 、骨盆 |
| 外文關鍵詞: | pelvis, FEM, Biomechanics, dyplasia, DDH, dislocation, gait analysis, hip, hip joint, joint force, calculate |
| 相關次數: | 點閱:107 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
髖關節發育異常(Developmental Dyplasia of the Hip : DDH)是在幼兒中常見的疾病。據美國臨床統計,每1000名新生兒就會有1-2位會發生先天性的DDH。DDH的成因非常複雜。可能是因為先天性的關節異常、或是關節的鬆脫、異常的肌肉拉力、股骨頭病變等。由於DDH隱含著髖關節的發育和成長,因此發育中的青少年或成人也會因為其他關節病變或異常而罹患DDH。
在臨床對於DDH治療的目標,是希望能穩定關節,使關節維持在正常關係。但是,由於臨床缺乏可以針對個別病患之力學特性做有效評估的工具,因此造成臨床醫師在診治DDH病患的困難。
本研究係結合步態分析系統,利用下肢簡化之剛體模型計算單腳脫位之DDH病患的髖關節力,並藉由三維有限元素法探討DDH病患骨盆之生物力學特性,建立未來有限元素法應用於DDH病患的研究方法。
由步態分析系統的關節力計算結果,針對更合理的有限元素模型之力學條件探討是有其必要性的。而在有限元素模擬部分,病患骨盆之密質骨為主要承受關節力的部位。在正常側及脫位側之密質骨,關節力皆朝恥骨和薦骨-腸股關節傳遞。並且,在脫位側之應力沿髖臼緣傳遞。而在海綿骨的部分,高應力主要分佈在腸股的背側,但是在正常及脫位側之應力分佈有明顯的不同,主要是由於脫位關節之關節力直接施於腸骨背側造成。
Abstract
The DDH is common disease in the new born infant and the adolescence as well as the adult could also be involved with the DDH. However, the basic biomechanical information is unclear and this information is important for the evaluation an treatment of this disease.
In this study, a unilateral dislocated DDH patient was employed to investigate the biomechanical response of the DDH. Both motion analysis and finite element simulation were used to perform the investigation through the comparison of the affected and normal sides. The results of motion analysis were used to obtain the joint reaction force, which was then input as the loading condition of finite element simulation. The results indicated that cortical bone was the major load carrier in both normal and affected pelvis and loading transferred from femoral head to the sacro-iliac joint as well as pubic bone. However, for the DDH side the loading was concentrated at the brim of acetabulum while the normal side was concentrated with the acetabulum joint. For the tabecular bone, the loading on pelvis, both normal and DDH side, was located the iliac wing but the DDH side had a greater stress value than the normal side. The major reason for these various stress distribution was due to the different loading conditions between the DDH and normal sides. Further investigation of the load condition through motion analysis is required to accurately represent the condition in dislocated hip join.
參考文獻
1. Shopee, K. Developmental Dyplasia of the Hip. Orthopaedic Nursing. 1992;11:5.Sep/Oct:30-36
2. Aronsson, D. D., Goldbeg, M. J., Kling T. F., Roy, D. R. Developmental dyplasia of the Hip. Pediatrics. 1994;94:2:201-208
3. Gerscovich, EO.A radiologists guide to the imaging in the diagnosis and treatment 0f developmental dyplasia of the hip. Skeletal Radiol. 1997;26:386-397
4. Jones, D. Neonatal Detection of Developmental Dyplasia of the Hip(DDH). The Journal of Bone and Joint Surgery. 1998;80-B:6943-945
5. Editorial. Developmental Dislocation of the Hip: Evolutionary Changes in Diagnosis and Treatment. Journal of Pediatric Orthopaedics 1994;14:1:P1-2
6. Beaty, J. H. Congenital Anomalies of Hip and Pelvis. Campbell’s Operative Orthopaedics. Vol. 3, 8rd, 1987;2159-2198.
7. Magee, D. J. Hip. Orthopedic Physical Assessment.3rd. 1994;333-371
8. Emergency Management of Skeletal Injuries. 1995;397-422
9. Pavasiliou, V. A., Kirkos, J. M. Reconstruction of Residual Deformities of the Hip. Clinical Orthopaedics and related research. 1997;341:123-127
10. Stahell, L. T. Surgical Management of Acetabular Dyplasia. Clinical Orthopaedics and Related Research. 1991;264:111-121
11. Wilkinsion JA. Prime Factors in the Etiology of Congenital Dislocation of the Hip. The Journal of Bone and Joint surgery. 1963;49:268-283
12. Greenhill, B. J., Hainau B., Ells, R. D., El-Sayed, R. M. Acetabular Changes in an Experimental Model of Developmental Dyplasia of the Hip(DDH). Journal of Pediatric Orthopaedics. 1995;15:789-793
13. Delgado-Baeza, E., Albinana-Cilveti, J., Miralles-Flores, C. Why Does Pelvic Deformity Occur in Experimental Dislocation of the Growing Hip?. Journal of Pediatric Orthopaedics. 1992;12:376-383
14. Ponseti, I. V., Iowa I. C. Morphology of the Acetabulum in Congenital Dislocation of the Hip. The journal of Bone and joint surgery. 1978;60:586-599
15. Roach, J. W., Ashman, R. B. Three–Dimensional Computer Analysis of Complex Acetabuluar Insufficiency. Journal of Pediatric Orthopaedics. 1977;17:158-164
16. Sullivan M. E., T’Brien T. Acetabular Dyplasia Presenting as Developmental Dislocation of the Hip. Journal of Pediatric Orthopaedics. 1994;14:1:13-15
17. Ries, M., Pugh, J., Au, J. C., Gurtowski, J., Dee, R. Cortical Pelvic Strains with Varying Size Hemiarthroplasty in vitro. Journal of Biomechanics. 1989;22:755-780
18. Jacob, H. A. C., Huggler, A. H., Dietschi, C. Mechanical Function of Subchondral Bone as Experimental Setermind on the Acetabalum of the Human Pelvis. Journal of Biomechanics. 1976;9:625-627
19. Finlay, J. B., Bourne, R. B., Landsberg, R. P. D., Andreae, P. Pelvic Stresses in Viro - Ⅰ. Malsizing of Pndoprostheses. Journal of Biomechanics. 1986;19:9:703-714
20. Finlay, J. B., Bourne, R. B., Landsberg, R. P. D., Andreae, P. Pelvic Stresses in Viro - Ⅱ.A Study of the Efficacy of metal – Backed Acetabular Prostheses. Journal of Biomechanics. 1986;19:9:715-725
21. Dalsra, M., Huiskes, R., Erning, L. V. Development and Validation of A Three – Dimensional Finite Element Model of the Pelvic Bone. Transactions of the ASME. 1995;117:August:272-278
22. Dalstra, M., Huiskes, R. Load Transfer Across The Pelvic Bone. Journal of Biomechanics. 1995;25:6:715-724
23. Spears, I. R., Pfleiderer, M., Schneider, E., Hille, E., Morlock, M. M. The effect of interfacial parameters on cup-bone relative micromotions A finite element investigation. Journal of Biomechanics. 2001;34:113-120
24. Michaeli, D. A., Murphy, S. B., Hipp J. A. Comparison of predicted and measured contact pressures in normal and dysplastic hips. Medical Engineering and Physics 1997;19:2:180-186
25. Segal, L. S., Schneider, D. J., Berlin, J. M., Bruno, A. B., Davis, B. R., Jacob, C. R. The Contribution of the Ossific Nueleus to the Structural Stiffness of the Capital Femoral Epiehysis: A Porcine Model for DDH. Journal of Pediatric Orthopaedics. 1999;19:433-437
26. Hong, W. E., Chang, C. H., *Lin, C. J., Liu P. H. Biomechanical Investigation of Developmental Dyplasia of the Hip : A Two-Dimensional Finite Element Approach. 2001年中華民國小兒骨科醫學年會
27. Vaughan, C. L., Davis, B. L. Dynamics of Human Gait. 1992
28. Beel, A. K., Pedersen, D. Rbrand, R. A. A Comparison of the Accuracy of Several Hip Center Location Prediction Method. Journal of Biomechanical. 1990:23;6;617-621
29. Kirkwood, R. N., Culham E. G., Costigan, P. Radiographic and Non-Invasive Determention of the Hip Joint Center Location:Effect on Hip Joint Moment. Clinical Biomechanics. 1999;14:227-235
30. John, J. F., Fisher, P. E. Radiographic Determination of the Hip Anatomic Hip Joint Center. Acta Orthop Scand 1994;65:509-510
31. Piazza, S. J., Okita, N., Cavanagh, P. R. Accuracy of the Functional Method of Hip Joint Center Location:Effects of Limited Motion and Varied Implementation. Journal of Biomechanics. 2001;34:967-973
32. Pedersen, D. R., Brand, R. A., Davy, D. T. Pelvic Muscle and Acetabular Contact Forces During Gait. Journal of Biomechanics. 1997;30:9:959-965
33. Seireg, A., Arvikara, R. J. A mathematical Model for Evaluation of Force in Lowe Extremities of the Musculo-Skeletal System. Journal of Biomechanics 1973;6:333-326
34. Komistek, R. D., Stiehl, J. B., Dennis, D. A., Paxson, R. D., Soutas-Little, R. W. Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane’s Method of Dynamics. Journal of Biomechanics. 1998;31:185-189
35. Bergmann, G., Deuretzbacher, G. Heller, M., Graichien, F., Rohlmann, A., Strauss., J., Duda, G. N. Hip contact Forces and Gait Patterns from routine Activities. Journal of Biomechanics. 2001;34:859-871
36. Berme, J., Paul, J. P. Load Actions Transmitted by Implants. Journal of Biomechanical Engineering. 1979;1:October:268-272
37. English, T. A., Kilvington, M. In Vivo Records Hip Loads Using A Femoral Implant with Telemetric Output(A Prelimary Report). Journal of Biomechanical Engineering. 1979;1:2:April:111-11
38. Vavy, D. T., Kotzar, G. M., Brown, R. H. Helple, K. G. Goldberg, V. M., Heiple, K. G., Berilla, J. Telemtric Force Measurements across the Hip after Total Arthroplasty. T he Journal of bone and Joint Surgery. 1988;70-A:1:Jan:45-50
39. Bergmann, G., Graichen, F., Rohlmann, A. Hip Joint Loading Walking and Running, Measured in Two Patients. Journal of Biomechanics. 1993;26:8;969-990
40. Johnston, R. C., Brand, R. A. Crownifshield, R. D., Jowa, I, C. Reconstruction of the Hip. Journal of Bone and Joint Surgery. 1979:61-A:5: 639-652
41. Seireg, A., Arvikara, R. J. The Prediction of Muscular Load Sharing and Joint Forces in the Lower Extremities During Walking. Journal of Biomechanics 1975;8:89-102
42. Hsin, J., Saluja, R., Eilert, R. E. Wiedel, J. D. Evaluation of the Biomechanics of the hip following a Trip Osteotomy of the Innominate Bone. The Journal of the Bone and Joint Surgery. 1996:78-A:6:855-862
43. Ortho track 4.1 gait analysis software reference manual. 1999
44. 林啟禎,髖關節的幾何結構分析與生物力學之研究,國立成功大學醫學工程研究所,博士論文,八十七年度