簡易檢索 / 詳目顯示

研究生: 鄭雅方
Jheng, Ya-Fang
論文名稱: 考量不完美生產及物料切換之經濟生產批量模型
EPQ models with imperfect production and material switching
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 51
中文關鍵詞: 經濟生產批量模型混合生產系統不完美生產
外文關鍵詞: EPQ, Hybrid system, Manufacturing/remanufacturing, Production uncertainty
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著環保意識的抬頭,企業處於競爭激烈的市場,為了兼顧環保與降低生產成本,有些企業採取以回收料進行製造的生產策略,但由於每批回收料的特性及純度較不一致,因此生產產品前必須對回收料進行生產參數的調整,也因此回收料的生產過程具有不確定性。
    本研究探討一間企業採取使用原物料製造以及回收料製造的混合生產系統,以經濟生產批量模型為基礎,建立三種模型,模型一為單純以原物料進行一次製造週期之經濟生產批量模型,用來當成比較後續加入以回收料來進行製造之混合生產模型是否能夠降低總成本之基準;模型二使用回收料進行製造,假設生產發生隨機失控產生不良品時,則不予處理並持續生產至回收料耗盡;模型三以回收料進行生產,探討在不允許缺貨的情況下,若生產發生失控,則立即修復機台並改採用原物料進行生產。
      依照上述求取極小化各模型單位時間期望總成本之最佳經濟生產批量,並且參考電子產品保護材料公司之生產參數並在符合研究假設下進行敏感度分析,以探討各模型在參數變動時適用的情況,最後可以得到在大部分的情況下,使用回收料生產的總成本最低,但是當生產率較小或維修成本非常大時,製造商會偏向以原物料進行生產,如果不良率提高,製造商則會傾向選擇以原物料生產或混合生產。

    In order to satisfy demand while achieving environmental friendly manufacturing and cost reduction, many companies began using recycled materials to produce goods these days. Because some characteristics of recycled materials such as purity and quality may be inconsistent with raw materials, the production process via recycled materials incurs production uncertainty.

    This research provides three economic production quantity (EPQ) models that use both raw materials and recycled materials to manufacture/remanufacture products to improve the production process with imperfect production and material switching. Model 1 is the EPQ model with raw materials, which serves as a standard of production cost for stable production. Model 2 uses only recycled materials, and model 3 uses both raw materials and recycled materials which is referred to as hybrid production. Models 2 and 3 are likely to go out of control and produce defective items.

    The numerical analysis found that using recycled materials to production is usually more profitable than hybrid production or raw materials production. However, model 1 or model 3 is likely to be better than model 2 under different parametric settings.

    摘要......................................................i Extended Abstract........................................ii 誌謝......................................................v 目錄.....................................................vi 表目錄.................................................viii 圖目錄...................................................ix 第一章 緒論................................................1 1.1 研究背景與動機........................................1 1.2 研究目的..............................................2 1.3 研究流程..............................................3 1.4 研究架構..............................................4 第二章 文獻探討............................................6 2.1 經濟生產批量..........................................6 2.2 考量經濟生產批量之混合生產系統..........................8 2.3 考量發生中斷之生產政策................................10 2.4 小節................................................12 第三章 模型建構與發展......................................13 3.1 模型情境.............................................13 3.1.1 模型假設..........................................14 3.1.2 符號定義..........................................15 3.2 模型一之建構與分析...................................15 3.3 模型二之建構與分析...................................17 3.3.1 情況一:回收料生產沒有發生失控(s≥t2)................17 3.3.2 情況二:回收料生產發生失控(s<t2)....................19 3.3.3 模型二之期望週期時間及期望總成本....................20 3.4 模型三之建構與分析...................................21 3.4.1 情況一:回收料正常生產(s≥t2).......................22 3.4.2 情況二:生產發生隨機失控(s<t2).....................22 3.4.3 模型三之期望週期時間及期望總成本....................24 3.5小結.................................................25 第四章 數值分析與參數敏感度分析.............................26 4.1 參數設定及求解.......................................26 4.1.1 參數變動範圍設定..................................27 4.2 回收料生發生失控之生產時間服從參數λ的韋伯分配之敏感度分析...29 4.2.1 λ對單位時間期望總成本的影響........................29 4.3 生產速率p的敏感度分析.................................30 4.3.1 生產速率p對經濟生產批量的影響......................30 4.3.2 生產速率p對單位時間期望總成本的影響.................31 4.4 需求率d的敏感度分析..................................32 4.4.1 需求率d對經濟生產批量的影響........................32 4.4.2 需求率d對單位時間期望總成本的影響...................33 4.5 不良率x的敏感度分析..................................34 4.5.1 不良率x對經濟生產批量的影響........................34 4.5.2 不良率x對單位時間期望總成本的影響...................35 4.6 成品存貨持有成本ch的敏感度分析........................36 4.6.1 成品存貨持有成本ch對經濟生產批量的影響..............36 4.6.2 成品存貨持有成本ch對單位時間期望總成本的影響.........37 4.7 維修成本cr的敏感度分析................................38 4.7.1 維修成本cr對經濟生產批量的影響.....................38 4.7.2 維修成本cr對單位時間期望總成本的影響................39 4.8 不良品殘值sv的敏感度分析..............................40 4.8.1 不良品殘值sv對經濟生產批量的影響....................40 4.8.2 不良品殘值sv對單位時間期望總成本的影響..............41 4.9小結 ................................................41 第五章 結論與未來研究方向..................................43 5.1 結論................................................43 5.2未來研究方向..........................................44 參考文獻..................................................46 附錄.....................................................50

    邱宜溱(2015),包裝材料回收再利用之生產管理策略,國立成功大學工業與資訊管理研究所碩士在職專班論文
    蘇敬元(2016),考量混合生產及回收料不確定性的整備時間之經濟生產批量模型,國立成功大學工業與資訊管理研究所碩士論文
    Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). “A literature review and perspectives in reverse logistics.” Resources, Conservation and Recycling, 97, 76-92.
    Cárdenas-Barrón, L. E. (2009). “Economic production quantity with rework process at a single-stage manufacturing system with planned backorders.” Computers & Industrial Engineering, 57(3), 1105-1113.
    Chiu, S. W. (2010). “Robust planning in optimization for production system subject to random machine breakdown and failure in rework.” Computers & Operations Research, 37, 899-908.
    Chiu, Y. S., Lin, H. D., & Chang, H. H. (2011). “Mathematical modeling for solving manufacturing run time problem with defective rate and random machine breakdown.” Computers &Industrial Engineering, 60, 576-584.
    Corum, A., Vayvay, Ö., & Bayraktar, E. (2014). “The impact of remanufacturing on total inventory cost and order variance.” Journal of Cleaner Production, 85, 442-452.
    Dowlatshahi, S. (2000). “Developing a theory of reverse logistics.” Interfaces, 30(3), 143-155.
    Freimer, M., Thomas, D., & Tyworth, J. (2006). “The value of setup cost reduction and process improvement for the economic production quantity model with defects.” European Journal of Operational Research, 173(1), 241-251.
    Harris, F. W. (1913). “How many parts to make at once.” The Magazine of Management, 10(2), 135-136, 152.
    Jaber, M. Y. (2006). “Lot sizing for an imperfect production process with quality corrective interruptions and improvements, and reduction in setups.” Computers & Industrial Engineering, 51(4), 781-790.
    Jaber, M. Y., & Guiffrida, A. L. (2008). “Learning curves for imperfect production processes with reworks and process restoration interruptions.” European Journal of Operational Research, 189, 93-104.
    Jayaraman, V., Guide Jr, V. D. R., & Srivastava, R. (1999). “A closed-loop logistics model for remanufacturing.” Journal of the Operational Research Society, 497-508.
    Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). “A survey of modeling and control of hybrid systems.” Annual Reviews in Control, 21, 79-92.
    Lin, G. C., Gong, D. C., & Chang, C. C. (2014). “On an economic production quantity model with two unreliable key components subject to random failures.” Indian Journal of Scientific & Industrial Research, 73, 149-152.
    Mitra, S. (2007). “Revenue management for remanufactured products.” Omega, 35(5), 553-562.
    Morgan, S. D., & Gagnon, R. J. (2013). “A systematic literature review of remanufacturing scheduling.” International Journal of Production Research, 51(16), 4853-4879.
    Mosterman, P. J., Biswas, G., & Sztipanovits, J. (1998). “A hybrid modeling and verification paradigm for embedded control systems.” Control Engineering Practice, 6(4), 511-521.
    Paul, S. K., Sarker, R., & Essam, D. (2014). “Real time disruption management for a two-stage batch production–inventory system with reliability considerations.” European Journal of Operational Research, 237, 113-128.
    Porteus, E. L. (1986). “Optimal lot sizing, process quality improvement and setup cost reduction.” Operations Research, 34(1), 137-144.
    Rosenblatt, M. J., & Lee, H. L. (1986). “Economic production cycles with imperfect production processes.” IIE Transactions, 18(1), 48-55.
    Sana, S. S. (2010). “An economic production lot size model in an imperfect production system.” European Journal of Operational Research, 201(1), 158-170.
    Sana, S. S. (2011). “A production-inventory model of imperfect quality products in a three-layer supply chain.” Decision Support Systems, 50(2), 539-547.
    Taft, E. W. (1918). “The most economical production lot.” Iron Age, 101(18), 1410-1412.
    Taleizadeh, A. A., Noori-daryan, M., & Tavakkoli-Moghaddam, R. (2015). “Pricing and ordering decisions in a supply chain with imperfect quality items and inspection under buyback of defective items.” International Journal of Production Research, 53(15), 4553-4582.
    Tang, O., & Teunter, R. (2006). “Economic lot scheduling problem with returns.” Production and Operations Management, 15(4), 488-497.
    Wang, J., Zhao, J., & Wang, X. (2011). “Optimum policy in hybrid manufacturing/remanufacturing system.” Computers & Industrial Engineering, 60(3), 411-419.
    Wei, J., & Zhao, J. (2015). “Pricing and remanufacturing decisions in two competing supply chains.” International Journal of Production Research, 53(1), 258-278.
    Zhang, Y., Lu, Z., & Xia, T. (2014). “A dynamic method for the production lot sizing with machine failures.” International Journal of Production Research, 52(8), 2436–2447.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE