| 研究生: |
詹佩玟 Chan, Pei-Wen |
|---|---|
| 論文名稱: |
新穎鈣鈦礦奈米薄膜面射型雷射共振腔之特性研究 Research on the characteristic of novel perovskite nano-thin film surface emitting laser's cavity |
| 指導教授: |
周昱薰
Chou, Yu-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 鈣鈦礦奈米薄膜 、面射型雷射 、分佈式布拉格反射鏡 、光學膠 |
| 外文關鍵詞: | erovskite nano-film, surface-emitting laser, distributed Bragg reflector, optical glue |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究鈣鈦礦奈米薄膜面射型雷射之共振腔,反射鏡採用高反射率的介質型分佈式布拉格反射鏡(DBR)作為上下層結構,其較無缺陷及裂痕且成本較低,並以旋轉塗佈法製備增益介質鈣鈦礦薄膜,在室溫下具有強大激子束縛能及高耦合強度,且透過改善鈣鈦礦的表面粗糙度及薄膜晶體品質以減少表面輻射復合及散射損失,而在元件製作過程中,為了避免增益介質受到破壞,利用光學膠黏合上下層DBR,製作出雷射共振腔之元件結構。
首先經由電腦軟體CST模擬DBR結構,再使用共濺鍍機(Sputter)實做DBR,達到布拉格反射鏡之中心波長750nm的高反射率DBR,另外我們在旋塗前有無對DBR照射uvo,還是使用金屬遮罩或真空膠帶黏貼DBR定義鈣鈦礦的工作區域後拆除並清潔表面,皆不影響DBR的結構。
接著以旋轉塗佈法製作不同鈣鈦礦MAPbI3與FAMACsPb(BrI)3於下層DBR上,使用真空膠帶定義鈣鈦礦的工作區域比金屬遮罩佳,因真空膠帶較薄,不容易在試片中間停留堆積影響鈣鈦礦成長,再來進入電子束蒸鍍機(E-gun)的高溫製程時,溫度並不影響鈣鈦礦的表面形貌及厚度,而FAMACsPb(BrI)3的晶粒尺寸較一致,厚度較厚,不易產生散射且能量增益多,發光強度較高,因此採用FAMACsPb(BrI)3作為共振腔中的增益介質。
最後以不施加壓力、輕壓、重壓和長尾夾對壓方式使光學膠黏合上下層DBR製作共振腔,所施加的壓力越大,共振腔長度越小,其中固定壓力的長尾夾對壓方式有較合適的共振腔長度,可以形成一個品質較好的雷射共振腔。
This thesis mainly discusses on perovskite nano-film surface-emitting laser’s cavity. We adopt a dielectric distributed Bragg reflector (DBR) with high-reflectivity as the top and bottom mirror, which is relatively no defects and cracks and has a relatively low cost. The gain medium, perovskite film, is manufactured by the spin-coating method, which has high exciton binding energy and high oscillation strength at room temperature and improving perovskite surface roughness and crystal quality reduces surface radiation recombination and scattering loss. To avoid the destruction of the gain medium during device fabrication, optical glue is used to bond the top and bottom DBRs to make the laser cavity's device structure.
參考文獻
[1] C. Weisbush, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity," Physical Review Letters, vol. 69, no. 23, pp. 3314-3317, 1992.
[2] R. Butte, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, "Room-temperature polariton luminescence from a bulk GaN microcavity," Physical Review B, vol. 73, 033315, 2006.
[3] L. V. Keldysh, and A. N. Kozlov, "Collective properties of excitons in semiconductors," Soviet Physics Journal of Experimrntal Theoretical Physics, vol. 27, no. 3, pp. 521-527, 1968.
[4] A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton- polariton lasers," Physical Review A, vol. 53, no. 6, pp. 4250-4253, 1996.
[5] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied Physics Letters, vol. 69, no. 1, pp. 1-3, 1996.
[6] C. C. Kao, T. C. Lu, H. W. Huang, J. T. Chu, Y. C. Peng, H. H. Yao, J. Y. Tsai, T. T. Kao, H. C. Kuo, S. C. Wang, and C. F. Lin, "The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN-GaN and Ta2O5-SiO2 distributed Bragg reflectors," IEEE Photonics Technology Letters, vol. 18, no. 7, pp. 877-879, 2006.
[7] J. T. Chu, T. C. Lu, H. H. Yao, C. C. Kao, W. D. Liang, J. Y. Tsai, H. C. Kuo, and S. C. Wang, "Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off," Japanese Journal of Applied Physics, vol. 45, no. 4A, pp. 2556-2560, 2006.
[8] 賴映佑, 盧廷昌, "氮化鎵雷射元件的發展與應用," 物理雙月刊, vol. 37, no. 1, pp. 38-48, 2015.
[9] T. S. Kao, Y. H. Chou, C. H. Chou, F. C. Chen, and T. C. Lu, "Lasing behaviors upon phase transition in solution-processed perovskite thin films," Apply Physics Letters, vol. 105, 231108, 2014.
[10] A. Einstein, "The quantum theory of radiation," Physikalische Zeitschrift, vol. 18, no. 121, pp.1-15, 1917.
[11] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Royal Society, vol. 114, no.767, 1927.
[12] J. P. Gordon, H. J. Zeiger, and C. H. Towens, "Molecular micro oscillator and new hyperfine structure in the microwave spectrum of NH3," Physical Review, vol. 95, no. 1, pp. 282-284, 1954.
[13] A. L. Schawlow, and C. H. Townes, "Infrared and optical masers," Physical Review, vol. 112, no. 6, pp. 1940-1949, 1958.
[14] T. H. Maiman, "Optical and microwave-optical experiments in ruby," Physical Review Letters, vol. 4, no. 11, pp. 564-566, 1960.
[15] T. H. Maiman, "Stimulated optical radiation in ruby," Nature, vol. 187, no. 4736, pp. 493-494, 1960.
[16] A. Javan, W. R. Bennett, Jr, and D. R. Herriott, "Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture," Physical Review Letters, vol. 6, no. 3, pp. 106-110, 1961.
[17] B. H. Soffer, and B. B. McFarland, "Continuously tunable, narrow-band organic dye lasers," Applied Physics Letters, vol. 10, no. 10, pp. 266-267, 1967.
[18] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GaAs junctions," Physical Review Letters, vol. 9, no. 9, pp. 366-368, 1962.
[19] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature," Applied Physics Letters, vol. 17, no. 3, pp. 109-111, 1970.
[20] M. T. Hill, and M. C. Gather, "Advances in small lasers," Nature Photonics, vol 8, pp. 908-918, 2014.
[21] 楊國輝, 黃宏彥, "雷射基本原理," 雷射原理與量測概論, 臺北市: 五南出版社, pp. 113-144, 2001.
[22] 施敏, 李明達, "發光二極體及雷射," 半導體元件物理與製作技術, 第三版, 新竹市: 國立交通大學出版社, pp. 391-395, 2013.
[23] W. Demtroder, Laser Spectroscopy Vol. 1 Basic principles, 4th ed., Springer, Chap5, pp. 235-236, 2008.
[24] J. T. Verdeyen, Laser Electronics, 3rd ed., Prentice Hall, Chap10, pp. 348-351, 1995.
[25] 羅志偉, 葉恬恬, "反其道而行的創新-啾頻脈衝放大," 物理雙月刊, vol. 41, no. 1, pp. 47-56, 2019.
[26] L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed., John Wiley & Sons, Chap4, pp.227-228, 2012.
[27] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 2nd ed., John Wiley & Sons, Chap9, pp.327-330, 2007.
[28] E. K.-A. Jr., Principle of Laser Materials Processing, John Wiley & Sons, Chap2, pp. 34-38, 2009.
[29] 楊國輝, 黃宏彥, "雷射光特性," 雷射原理與量測概論, 臺北市: 五南出版社, pp. 157-181, 2001.
[30] 陳軍, 山本將史, "何謂雷射?," 圖解光與雷射應用, 臺北市: 世茂出版社, pp.110-136, 2010.
[31] E. Hecht, Optics, 4th ed., Addison Wesley, Chap12, pp. 560-562, 2002.
[32] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," Japanese Journal of Applied Physics, vol. 18, no. 12, pp. 2329-2330, 1979.
[33] F. Koyama, S. Kinoshita, K. Iga, "Room temperature cw operation of GaAs vertical cavity surface emitting laser," IEICE Transactions Letter Quantum Electronics, vol. E71-E, no. 11, pp. 1089-1090, 1988.
[34] J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill, Chap10, pp. 534-537, 1995.
[35] G. R. Fowles, Introduction to Modern Optics, 2nd ed., Holt, Rinehart and Winston, Chap4, pp. 96-101, 1975.
[36] G. Hernandez, Fabry-Perot Interferometers, 3rd ed., Cambridge University Press, 1986.
[37] E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press, Chap14, pp. 241-244, 2006.
[38] A. Navrotsky and D. J. Weidner, "Perovskite: a structure of great interest to geophysics and materials science," Washington DC American Geophysical Union Geophysical Monograph Series, vol. 45, 1989.
[39] J. P. Attfield, P. Lightfoot, and R. E. Morris, "Perovskites," Dalton Transactions, vol. 44, no. 23, pp. 10541-10542, 2015.
[40] Z. Cheng, and J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
[41] G. E. Eperon, S. D. Strank, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
[42] E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, and L. Dou, "Two-dimensional halide perovskite nanomaterials and heterostructures," Chemical Society Reviews, vol. 47, no. 16, pp. 6046-6072, 2018.
[43] Y. Dong, Y. Zou, J. Song, X. Song, and H. Zeng, "Recent progress of metal halide perovskite photodetectors," Journal of Materials Chemistry C, vol. 5, no. 44, pp. 11369-11394, 2017.
[44] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J. P. Ahn, J. W. Lee, and J. K. Song, "Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning," Nano Letters, vol. 15, no. 8, pp. 5191-5199, 2015.
[45] C. Zhang, D. B. Kuang, and W. Q. Wu, " A review of diverse halide perovskite morphologies for efficient optoelectronic applications," Small Methods, vol. 4, no. 2, 1900662, 2019.
[46] H. L. Wells, "On the caesium- and the potassium-lead halides," American Journal of Science, vol. 45, no. 266, pp. 121, 1893.
[47] D. Weber, "CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur / CH3NH3PbX3, a Pb(II)-system with cubic perovskite Structure," Zeitschrift fur Naturforschung B, vol. 33, no. 12, pp. 1443-1445, 1978.
[48] D. B. Mitzi, "Synthesis, structure, and properties of organic-inorganic perovskites and related materials," Progress in Inorganic Chemistry, vol. 48, pp. 1-121, 1999.
[49] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[50] G. Xing, N. Mathews, S. s. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature Materials, vol. 13, pp. 476-480, 2014.
[51] Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, "Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor," Nature Photonics, vol. 11, pp. 784-788, 2017.
[52] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Letters, vol. 14, no. 10, pp. 5995-6001, 2014.
[53] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature Materials, vol. 14, pp. 636-642, 2015.
[54] B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, and L. Zhang, "Single-mode lasers based on cesium lead halide perovskite submicron spheres," ACS Nano, vol. 11, no. 11, pp. 10681-10688, 2017.
[55] B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, "Single-mode lasing and 3D confinement from perovskite micro-cubic cavity," Journal of Materials Chemistry C, vol. 6, pp. 11740-11748, 2018.
[56] A. S. Polushkin, E. Y. Tiguntseva, A. P. Pushkarev, and S. V. Makarov, "Single-particle perovskite lasers: from material properties to cavity design," Nanophotonics, vol. 9, no. 3, pp. 599-610, 2020.
[57] Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, "Advances in small perovskite-based lasers," Small Methods, vol. 1, no. 9, 1700163, 2017.
[58] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, "High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors," The Journal of Physical Chemistry Letters, vol. 5, no. 8, pp. 1421-1426, 2014.
[59] C. Y. Huang, C. Zou, C. Mao, K. L. Corp, Y. C. Yao, Y. J. Lee, C. W. Schlenker, A. K. Y. Jen, and L. Y. Lin, "CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability," ACS Photonics, vol. 4, no. 9, pp. 2281-2289, 2017.
[60] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature Communications, vol. 6, 8056, 2015.
[61] H. Cha, S. Bae, M. Lee, and H. Jeon, "Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain," Applied Physics Letters, vol. 108, 181104, 2016.
[62] M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. A. Webber, B. Wenger, S. D. Stranks, M. T. Horantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, "Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser," Advanced Materials, vol. 28, no. 5, pp. 923-929, 2016.
[63] D. J. Xue, Y. Hou, S. C. Liu, M. Wei, B. Chen, Z. Huang, Z. Li, B. Sun, A. H. Proppe, Y. Dong, M. I. Saidaminov, S. O. Kelley, J. S. Hu, and E. H. Sargent, "Regulating strain in perovskite thin films through charge-transport layers," Nature Communications, vol. 11, 1514, 2020.
[64] J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield, J. Huang, "Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells," Science Advances, vol. 3, no. 11, eaao5616, 2017.
[65] E. Moloney, V. Yeddu, and M. I. Saidaminov, "Strain engineering in halide perovskites," ACS Materials Letters, 2020.
[66] Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M. H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu, C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama, S. Dayeh, L. J. Li, K. Yang, Y. H. Lo, and S. Xu, "Strain engineering and epitaxial stabilization of halide perovskites," Nature, vol. 577, pp. 209-215, 2020.
[67] H. Yu, Q. Zhang, Y. Zhang, Kai Lu, C. Han, Y. Yang, K. Wang, X. Wang, M. Wang, J. Zhang, B. Hu, "Using Mechanical Stress to Investigate the Rashba Effect in Organic−Inorganic Hybrid Perovskites," The Journal of Physical Chemistry Letters, vol. 10, no. 18, pp. 5446-5450, 2019.
[68] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. F. Konig, "Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating," ACS Applied Materials & Interfaces, vol. 11, no. 14, pp. 13752-13760, 2019.
[69] L. V. R. D. Marcos, J. I. Larruquert, J. A. Mendez, and J. A. Aznarez, "Self-consistent optical constants of SiO2 and Ta2O5 films," Optical Materials Epress, vol. 6, no. 11, pp. 3622-3637, 2016.
[70] A. M. A. Leguy, Y. Hu, M. C. Quiles, M. L. Alpnso, O. J. Weber, P. Azarhoosh, M. V. Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, " Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells," Chemistry of Matterials, vol. 27, no. 9, pp. 3397-3407, 2015.
[71] S. K. Cohen, and S. R. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, pp. 371-375, 2010.
校內:2025-10-28公開