簡易檢索 / 詳目顯示

研究生: 陳昱憲
Chen, Yu-Hsien
論文名稱: 高壓無氣噴塗之數值模擬與逸散控制之研究
Numerical Simulation and Overspray Control in High-pressure Airless Spraying
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 197
中文關鍵詞: 高壓無氣噴塗爬壁式噴塗機器人塗料逸散行為分析實驗驗證吹氣與抽氣結構
外文關鍵詞: High-pressure airless spraying, Wall-climbing spray robot, Paint overspray behavior analysis, Experiment validation of numerical model, Blowing and exhaust system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高壓無氣噴塗技術因能在不依靠壓縮空氣的情況下完成高效率的塗料霧化,且適用於高黏度與高固含量塗料,已被廣泛應用於大型鋼構、橋樑與儲存桶槽等防蝕工業塗裝作業。然而,傳統人工噴塗在面對大型桶槽或高處結構時,往往需要作業人員進入高空或懸吊作業環境,存在墜落、吸入有害揮發物等安全風險。因此近年來,爬壁式噴塗機器人逐漸成為替代人力的解決方案,不僅能提供穩定且一致的塗層品質、降低人為造成的覆蓋不均與塗料浪費,更可顯著減少作業人員暴露於高風險環境中所可能引發的工安事故。而在實務上透過機器人的噴塗時,發現到在實際高壓無氣噴塗過程中,由於高壓驅動產生的高動能,仍可能導致大量塗料粒子於飛行及撞擊表面後發生逸散,不僅造成塗料浪費與環境污染,也降低沉積效率與成膜品質的穩定性。因此,本研究以爬壁式噴塗機器人在桶槽表面塗裝作業為主要應用場景,針對其製程與風罩結構設計進行逸散控制的優化研究,並結合數值模擬與實驗量測的方式,首先確認建立之數值模型與實驗的準確性,再探討風罩幾何、吹氣與抽氣設計對粒子逸散之影響。最後,進一步針對實務應用中噴塗機器人所搭配之實體風罩幾何進行模擬,並引入真實油漆材料性質,使模擬條件更貼近實際高壓無氣噴塗製程,提升數值分析對實際工業應用的參考價值。
    在數值模擬方面,建立與實驗相同的三維幾何模型,並採用 Realizable k-ε紊流模型與離散相模型(Discrete Phase Model)模擬噴嘴噴塗、粒子霧化、飛行、碰撞與逸散等完整過程,系統性探討不同風罩幾何、吹氣與抽氣設計對粒子附著與逸散行為的影響。透過改變不同製程條件如吹氣角度、抽氣角度、抽氣孔形狀,觀察風罩內部流場中,氣體的走向和其導引能力與粒子軌跡的變化,比較各組條件下之壁面沉積率、風罩附著率與逸散率三個指標。結果顯示,當吹氣角度為 60° 且抽氣孔形狀為圓孔時,可最有效減少粒子從風罩間隙逸出,降低整體逸散率。
    實驗部分則搭建透明風罩平台並配置質量收集裝置,量測不同條件下粒子在壁面、罩內與罩外的分布情況,以驗證模擬結果的準確性與可行性。結果證實,所建立的模擬架構能有效預測實際粒子分佈趨勢,並提供定量化依據作為逸散控制設計的優化基礎。
    本研究之創新與貢獻包括:(1) 以爬壁式噴塗機器人在桶槽表面塗裝應用為目標,提出製程與結構設計優化方向;(2) 結合數值與實驗驗證,提升模型可信度;(3) 導入完整風罩結構與實際製程條件,使研究結果貼近工業應用需求;(4) 建立一套可應用於自動化噴塗系統與實體風罩設計之逸散控制優化流程。此成果可為未來高效率噴塗設備與自動化塗裝系統設計提供重要參考依據。

    High-pressure airless spraying efficiently atomizes high-viscosity, high-solids coatings without compressed air, widely used for large steel structures, bridges, and tanks. Manual spraying of such structures poses safety risks, while wall-climbing spray robots offer stable quality, reduced overspray, and improved safety.
    In practice, the high kinetic energy of the spray still causes particle escape, wasting material and reducing efficiency. This study focuses on optimizing overspray control for wall-climbing spray robots through process and hood design. A validated CFD model, using the Realizable k-ε turbulence model and Discrete Phase Model, simulates atomization, particle motion, and escape. Variables such as hood geometry, blowing angle, exhaust angle, and exhaust port shape are tested.
    Results show that a 60° blowing angle with circular exhaust ports best reduces dispersion. Experiments with a transparent hood confirm simulation accuracy, making the model a reliable tool for process optimization. The study provides a practical framework for improving industrial spray robot performance and coating efficiency.
    The main contributions of this work are: (1) targeting wall-climbing spray robots for tank coating to propose process and structural optimization strategies; (2) integrating simulation and experiments to enhance model reliability; (3) incorporating real hood geometry and process conditions to match industrial applications; and (4) establishing an overspray control optimization framework applicable to automated spraying systems and hood design. These findings offer valuable guidance for developing efficient spraying equipment and automated coating systems.

    摘要 I Extended Abstract III 誌謝 LXIX 目錄 LXXI 圖目錄 LXXV 表目錄 LXXVIII 符號說明 LXXX 第一章 緒論 1 1-1 前言 1 1-2 無氣噴塗介紹 3 1-2.1 傳統噴塗方式與高壓無氣噴塗之差異 3 1-2.2 無氣噴塗製程 5 1-3 文獻回顧 8 1-3.1 無氣噴塗之霧化特性 8 1-3.2 無氣噴塗的CFD數值模擬 10 1-3.3 紊流模型 11 1-4 研究動機與目的 13 1-5 論文架構與研究流程 15 第二章 理論背景與噴塗流場建立 20 2-1 空氣項模流分析理論 20 2-2 粒子撞擊理論[30] 21 第三章 有限元素模擬 26 3-1 噴塗分析流程 26 3-2 幾何模型 27 3-2.1 靜態噴塗模型 28 3-2.2 45度角吹氣噴塗幾何模型 29 3-2.3 45度角吹氣圓形抽氣孔噴塗幾何模型 31 3-2.4 45度角吹氣狹縫抽氣孔噴塗幾何模型 32 3-2.5 60度角吹氣狹縫抽氣孔噴塗幾何模型 33 3-2.6 60度角吹氣圓形抽氣孔噴塗幾何模型 35 3-3 網格模型 36 3-4 材料性質 40 3-5 數值模擬設定 43 3-5.1 基本設定(General Settings) 43 3-5.2 黏度模型設定(Viscous Model Settings) 44 3-5.3 離散項設定(Discrete Phase Settings) 46 3-5.4 注入模型設定(Injections Model Settings) 49 3-5.5 紊流模型時間參數設定(Time Step Settings) 52 第四章 無氣噴塗實驗 54 4-1 實驗設備 54 4-2 噴塗製程設定 56 第五章 研究結果與討論 58 5-1 風罩與壁面間距對噴塗逸散行為之影響 58 5-1.1 連續項邊界類型與離散項邊界條件設定 58 5-1.2 模擬結果分析 59 5-1.3 實驗結果分析 62 5-1.4 模擬與實驗結果討論 65 5-2 吹氣流量對逸散行為之影響 67 5-2.1 連續項邊界類型與離散項邊界條件設定 67 5-2.2 模擬結果分析 68 5-2.3 模擬與實驗結果討論 71 5-3 抽氣對逸散行為之影響 73 5-3.1 連續項邊界類型與離散項邊界條件設定 73 5-3.2 模擬結果分析 75 5-3.3 實驗結果討論 79 5-4 吹氣角度對噴塗逸散行為之影響 80 5-4.1 連續項邊界類型與離散項邊界條件設定 81 5-4.2 模擬結果分析與討論 82 5-5 抽氣孔形狀對噴塗逸散行為之影響 88 5-5.1 連續項邊界類型與離散項邊界條件設定 88 5-5.2 模擬結果分析與討論 89 第六章 實際風罩的抽氣模擬 93 6-1.1 連續項邊界類型與離散項邊界條件設定 96 6-1.2 材料性質與模擬參數設定 98 6-1.3 模擬結果分析與討論 101 第七章 結論與未來展望 106 7-1 結論 106 7-2 未來展望 107 參考文獻 109 索引 112

    [1] J. Domnick, A. Lindenthal, C. Tropea, T.-H. Xu, “Application of Phase Doppler Anemometry in Paint Sprays,” Atomization and Sprays, 1994.
    [2] Q. Ye, B. Shen, O. Tiedje, J Domnick, "Investigations of Spray Painting Processes Using an Airless Spray Gun," Journal of Energy and Power Engineering, vol. 7, pp. 74–81, 2013.
    [3] J. L. York, H. E. Stubbs, M. R. Tek, "The Mechanism of Disintegration of Liquid Sheets," ASME Transactions, vol. 75, no. 7, pp. 1279–1286, 1953.
    [4] M. Y. Naz, S. A. Sulaiman, B. Ari-Wahjoedi, K. Z. K. Shaari, "Visual Study of Hollow Cone Water Spray Jet Breakup Process at Elevated Temperatures and Pressures," Applied Mechanics and Materials, vol. 465, pp. 485–489, 2014.
    [5] M. Y. Naz, S. A. Sulaiman, B. Ariwahjoedi, K. Z. K. Shaari, "Visual Characterization of Airless Water Spray Jet Breakup and Vortex Clouds Formation at Elevated Temperature and Pressure," Arabian Journal for Science and Engineering, vol. 39, pp. 7241–7250, 2014.
    [6] Q. Ye, J. Domnick, E. Khalifa, "Simulation of the Spray Coating Process Using a Pneumatic Atomizer," Proceedings of ILASS-Europe 2002, Zaragoza, 2002.
    [7] Q. Ye, B. Shen, O. Tiedje, T. Bauernhansl, J. Domnick, "Numerical and Experimental Study of Spray Coating Using Air-assisted High-Pressure Atomizers," Atomization and Sprays, vol. 25, no. 8, 2015.
    [8] W. Schäfer, Time-shift technique for particle characterization in sprays, epubli GmbH, 2013.
    [9] W. Schäfer, C. Tropea, "Time-shift Technique for Simultaneous Measurement of Size, Velocity, and Relative Refractive Index of Transparent Droplets or Particles in a Flow," Applied Optics, vol. 53, pp. 588–597, 2014.
    [10] W. Schäfer, S. Rosenkranz, C. Tropea, "Validation of the Time-shift Technique for Spray Characterization," Proceedings of the ILASS–Americas 27th Annual Conference on Liquid Atomization and Spray Systems, 2015.
    [11] H. Zhang, H.-L. Bo, "Motion of Polydispersed Droplets Predicted by a Lagrangian-Eulerian Method," Journal of Tsinghua University (Science and Technology), vol. 55, no. 1, pp. 105–114, 2015.
    [12] J. Gu, Y. Shao, X. Liu, W. Zhong, A. Yu, "Modelling of Particle Flow in a Dual Circulation Fluidized Bed by a Eulerian-Lagrangian Approach," Chemical Engineering Science, vol. 192, pp. 619–633, 2018.
    [13] F. Hoppe, M. Breuer, "A Deterministic and Viable Coalescence Model for Euler–Lagrange Simulations of Turbulent Microbubble-Laden Flows," International Journal of Multiphase Flow, vol. 99, pp. 213–230, 2018.
    [14] J. Tausendschön, J. Kolehmainen, S. Sundaresan, S. Radl, "Coarse Graining Euler-Lagrange Simulations of Cohesive Particle Fluidization," Powder Technology, vol. 364, pp. 167–182, 2020.
    [15] Y. Yu, Y. Li, M. Jiang, Q. Zhou, "Meso-Scale Drag Model Designed for Coarse-Grid Eulerian-Lagrangian Simulation of Gas-Solid Flows," Chemical Engineering Science, vol. 223, no. 115747, 2020.
    [16] Z. Petranović, W. Edelbauer, M. Vujanović, N. Duić, "Modelling of Spray and Combustion Processes by Using the Eulerian Multiphase Approach and Detailed Chemical Kinetics," Fuel, vol. 191, pp. 25–35, 2017.
    [17] A. Pandal, J. M. García-Oliver, R. Novella, J. M. Pastor, "A Computational Analysis of Local Flow for Reacting Diesel Sprays by Means of an Eulerian CFD Model," International Journal of Multiphase Flow, vol. 99, pp. 257–272, 2018.
    [18] Z. Yi, S. Mi, T. Tong, K. Li, B. Feng, B. Li, Y. Lin, "Simulation Analysis on the Jet Flow Field of a Single Nozzle Spraying for a Large Ship Outer Panel Coating Robot," Coatings, vol. 12, no. 3, 2022.
    [19] Z. Yi, S. Mi, T. Tong, K. Li, B. Feng, "Simulation Analysis on Flow Field of Paint Mist Recovery With Single Nozzle for Ship Outer Panel Spraying Robot," Coatings, vol. 12, no. 4, 2022.
    [20] Q. Ye, J. Domnick, A. Scheibe, K. Pulli, "Numerical Simulation of Electrostatic Spray-Painting Processes in the Automotive Industry," High Performance Computing in Science and Engineering’04: Transactions of the High Performance Computing Center Stuttgart (HLRS) 2004, pp. 261–275, Berlin, Heidelberg: Springer, 2005.
    [21] Q. Ye, A. Scheibe, "Unsteady Numerical Simulation of Electrostatic Spray-Painting Processes With Moving Atomizer," Proceedings of the 13th International Coating Science and Technology Symposium, Denver, 2006.
    [22] S.-M. Chen, W.-Z. Chen, Y. Chen, J.-Z. Jiang, Z.-J. Wu, S. Zhou, "Research on Film-Forming Characteristics and Mechanism of Painting V-Shaped Surfaces," Coatings, vol. 12, no. 5, 2022.
    [23] S.-M. Chen, Y. Chen, W.-Z. Chen, J.-Z. Jiang, S. Zhou, "Numerical Simulation of Film Formation on V-Shaped Surface by Spraying," Surf. Technol., vol. 52, pp. 285–295, 2023.
    [24] W. Chen, Y. Chen, W. Zhang, S. He, B. Li, J. Jiang, "Paint Thickness Simulation for Robotic Painting of Curved Surfaces Based on Euler–Euler Approach," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 4, 2019.
    [25] W. Chen, Y. Chen, S. Wang, Z. Han, M. Lu, S. Chen, "Simulation of a Painting Arc Connecting Surface by Moving the Nozzle Based on a Sliding Mesh Model," Coatings, vol. 12, no. 10, 2022.
    [26] G. Yang, Z. Wu, Y. Chen, S. Chen, J. Jiang, "Modeling and Characteristics of Airless Spray Film Formation," Coatings, vol. 12, no. 7, 2022.
    [27] Y. Chen, J. Hu, W. Chen, G. Zhang, S. Zhou, B. Li, "Simulation Research on Characteristics of Paint Deposition on Spherical Surface," IOP Conference Series: Materials Science and Engineering, vol. 542, no. 1, 2019.
    [28] Z.-Y. Yi, S. Mi, T. Tong, K. Li, B. Feng, "Simulation Analysis on Flow Field of Paint Mist Recovery With Single Nozzle for Ship Outer Panel Spraying Robot," Coatings, vol. 12, no. 4, 2022.
    [29] M. Fogliati, D. Fontana, M. Garbero, M. Vanni, G. Baldi, R. Donde, "CFD Simulation of Paint Deposition in an Air Spray Process," JCT Research, vol. 3, pp. 117–125, 2006.
    [30] ANSYS Inc., ANSYS Fluent Theory Guide, Release 14.0, Canonsburg, PA, USA, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE