簡易檢索 / 詳目顯示

研究生: 彭唯耕
Peng, Wei-Geng
論文名稱: 單螺帽滾珠螺桿之準靜態分析與動態分析
Quasi-static Analysis and Dynamic Analysis for a Single Nut Ball Screw
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 滾珠螺桿準靜態分析動態分析赫茲接觸理論幾何誤差
外文關鍵詞: ball screw, quasi-static analysis, dynamic analysis, Hertz contact theory, dimension error
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用赫茲接觸理論與運動學建立計算螺帽內部各元件之接觸理論計算模型,並以準靜態與動態分析兩套數值分析流程對單螺帽滾珠螺桿進行分析。準靜態分析能夠觀察力平衡下所有滾珠與螺桿、螺帽之間的接觸力、接觸角、接觸變形量與接觸應力,並藉由最大接觸應力對滾珠螺桿進行壽命的評估。動態分析考慮滾珠之循環與滾珠撞擊迴流道之情形,分析滾珠螺桿運轉時,各元件之振動情形,並主要以螺帽的振動為分析目標。動態分析結果之振動型態與球通頻率和實驗之結果十分接近。本研究改變滾珠螺桿之操作條件與結構參數,對滾珠螺桿進行接觸與振動的探討以及壽命的評估,最後研究過大滾珠預壓方式與滾珠的幾何誤差對滾珠螺桿造成之影響。

    In this study, quasi-static and dynamic analysis models are presented using Hertz contact theory and kinematics. Quasi-static analysis can determine the contact load, contact angle, contact deformation and contact stress of all balls under different conditions. Considering the ball circulation and the collision between ball and return tube, dynamic analysis can simulate the movement of the ball and the vibration of the nut when the ball screw is operating. The vibration pattern and the ball pass frequency obtained from dynamic analysis are very close to and the experimental results. By using these two analysis methods, the effects of operating conditions and structural parameters on the ball screw performance can be evaluated. Finally, the influence of the oversized ball preload and ball dimension error on the ball screw performance are investigated.

    摘要 i ABSTRACT ii 致謝 xi 目錄 xii 圖目錄 xv 表目錄 xx 符號表 xxi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 滾珠螺桿文獻回顧 2 1.2.2 滾珠軸承文獻回顧 4 1.3 研究目的 5 1.4 本文架構 6 第二章 滾珠螺桿理論模型 7 2.1 前言 7 2.2 滾珠螺桿之幾何與運動計算 7 2.2.1 座標系建立 7 2.2.2 滾珠公轉速度 9 2.2.3 單圈滾珠數目與球通頻率 10 2.3 滾珠與軌道交互作用理論 12 2.3.1 座標系建立與滾珠接觸角計算 12 2.3.2 接觸剛性與接觸力之計算 16 2.4 滾珠與迴流系統碰撞理論 19 2.5 分析方法與流程 22 2.5.1 準靜態分析 22 2.5.2 動態分析 26 2.5.3 分析方法比較 30 2.6 準靜態分析結果 31 2.7 動態分析結果 34 2.7.1 參數設定 34 2.7.2 滾珠螺桿運轉時螺帽振動情形 35 2.8 本章小結 40 第三章 實驗與驗證 41 3.1 工具機機台與訊號擷取設備 41 3.2 滾珠螺桿敲擊實驗 43 3.3 滾珠螺桿運轉實驗與動態分析驗證 48 3.3.1 滾珠螺桿運轉實驗 48 3.3.2 動態分析結果驗證 52 3.4 本章小結 57 第四章 操作條件與結構參數對滾珠螺桿之影響 58 4.1 準靜態分析 58 4.1.1 不同操作條件對滾珠與螺桿、螺帽接觸情形之影響 59 4.1.2 結構參數對滾珠與螺桿、螺帽接觸情形之影響 74 4.1.3 壽命計算 80 4.2 動態分析 83 4.2.1 螺桿轉速對螺帽振動情形之影響 87 4.2.2 牙型係數對螺帽振動情形之影響 92 4.3 本章小結 96 第五章 過大滾珠預壓方式與滾珠幾何誤差對滾珠螺桿之影響 97 5.1 過大滾珠預壓方式對滾珠螺桿之影響 97 5.2 滾珠幾何誤差對滾珠螺桿之影響 105 5.3 本章小結 113 第六章 結論與建議 114 6.1 結論 114 6.2 建議 115 參考文獻 116

    [1] 王建文, 滾珠導螺桿低頻噪音源之鑑別及改善研究. 國立清華大學動力機械工程學系碩士論文, 2006.
    [2] Ninomiya, M. and K. Miyaguchi, Recent technical trends in ball screws. NSK Tech Journal: Motion Control, 1998. 664: p. 1-3.
    [3] Lin, M., B. Ravani, and S. Velinsky, Kinematics of the ball screw mechanism. Journal of mechanical design, 1994. 116(3): p. 849-855.
    [4] Lin, M., S. Velinsky, and B. Ravani, Design of the ball screw mechanism for optimal efficiency. Journal of mechanical design, 1994. 116(3): p. 856-861.
    [5] Huang, H.-T.T. and B. Ravani, Contact stress analysis in ball screw mechanism using the tubular medial axis representation of contacting surfaces. Journal of mechanical design, 1997. 119(1): p. 8-14.
    [6] 魏進忠, 單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件下運動機制與機械性能的理論分析及實驗印證. 國立成功大學機械工程學系博士論文, 2003.
    [7] Wei, C.-C. and R.-S. Lai, Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds. Mechanism and machine theory, 2011. 46(7): p. 880-898.
    [8] 羅凱鴻, 滾珠螺桿預壓之偵測. 國立中正大學機械工程學系暨研究所碩士論文, 2011.
    [9] 黃弘竣, 滾珠螺桿進給系統預壓偵測技術之研發. 國立中正大學機械工程學系暨研究所碩士論文, 2012.
    [10] 許夫瀚, 具預壓之滾珠螺桿其振動特性之分析. 國立中正大學機械工程學系暨研究所碩士論文, 2014.
    [11] 李孟軒, 進給系統振動特性與螺桿壽命預估之研究. 國立中正大學機械工程學系暨研究所碩士論文, 2015.
    [12] Zaeh, M., T. Oertli, and J. Milberg, Finite element modelling of ball screw feed drive systems. CIRP Annals-Manufacturing Technology, 2004. 53(1): p. 289-292.
    [13] Okwudire, C., Finite element modeling of ballscrew feed drive systems for control purposes. 2005, University of British Columbia.
    [14] Chen, Y. and W. Tang, Dynamic contact stiffness analysis of a double-nut ball screw based on a quasi-static method. Mechanism and Machine Theory, 2014. 73: p. 76-90.
    [15] Kong, D., M. Wang, and X. Gao, Theoretical and experimental analysis of drag torque for accelerated motion of ball screw mechanism. Advances in Mechanical Engineering, 2017. 9(12): p. 1687814017743112.
    [16] Hung, J.-P., J.S.-S. Wu, and J.Y. Chiu, Impact failure analysis of re-circulating mechanism in ball screw. Engineering failure analysis, 2004. 11(4): p. 561-573.
    [17] 蘇栢賢, 滾珠導螺桿振動噪音之研究. 國立清華大學動力機械工程學系碩士論文, 2005.
    [18] Jiang, H., X. Song, W. Tang, X. Xu, and C. Zhang. Research on the contact-impact between balls and re-circulating mechanism using the multibody dynamics simulation. 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, August20-22. 2010.
    [19] Jiang, H., X. Song, X. Xu, W. Tang, C. Zhang, and Y. Han. Multibody dynamics simulation of Balls impact-contact mechanics in Ball Screw Mechanism. Electrical and Control Engineering (ICECE), 2010 International Conference on. 2010. IEEE.
    [20] Song, X.C., W.C. Tang, H.K. Jiang, B.S. Rong, H.B. Zhou, B.M. Li, J.S. Zhu, and Z.M. Wang. Optimized designing for structure of ball screw recycling tunel. Applied Mechanics and Materials. 2011. Trans Tech Publ.
    [21] Mei, X., M. Tsutsumi, T. Tao, and N. Sun, Study on the load distribution of ball screws with errors. Mechanism and Machine Theory, 2003. 38(11): p. 1257-1269.
    [22] Xu, S., Z. Yao, Y. Sun, and H. Shen. Load Distribution of Ball Screw With Consideration of Contact Angle Variation and Geometry Errors. ASME 2014 International Mechanical Engineering Congress and Exposition. 2014. American Society of Mechanical Engineers.
    [23] Zhen, N. and Q. An, Analysis of stress and fatigue life of ball screw with considering the dimension errors of balls. International Journal of Mechanical Sciences, 2018. 137: p. 68-76.
    [24] Lin, B., C.E. Okwudire, and J.S. Wou, Low Order Static Load Distribution Model for Ball Screw Mechanisms Including Effects of Lateral Deformation and Geometric Errors. Journal of Mechanical Design, 2018. 140(2): p. 022301.
    [25] Jones, A., A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. Journal of Basic Engineering, 1960. 82(2): p. 309-320.
    [26] Harris, T., An analytical method to predict skidding in thrust-loaded, angular-contact ball bearings. Journal of lubrication technology, 1971. 93(1): p. 17-23.
    [27] 廖能通, 高速滾珠軸承之運動接觸機制與疲勞壽命分析. 國立成功大學機械工程學系博士論文, 2002.
    [28] Gupta, P., Dynamics of rolling-element bearings—Part I: Cylindrical roller bearing analysis. Journal of lubrication technology, 1979. 101(3): p. 293-302.
    [29] Gupta, P., Dynamics of rolling-element bearings—Part II: Cylindrical roller bearing results. Journal of Lubrication Technology, 1979. 101(3): p. 305-311.
    [30] Gupta, P., Dynamics of rolling-element bearings—Part III: Ball bearing analysis. Journal of lubrication technology, 1979. 101(3): p. 312-318.
    [31] Gupta, P., Dynamics of rolling-element bearings—part IV: Ball bearing results. Journal of lubrication technology, 1979. 101(3): p. 319-326.
    [32] McFadden, P. and J. Smith, Model for the vibration produced by a single point defect in a rolling element bearing. Journal of sound and vibration, 1984. 96(1): p. 69-82.
    [33] Fukata, S., E.H. Gad, T. Kondou, T. Ayabe, and H. Tamura, On the radial vibration of ball bearings: computer simulation. Bulletin of JSME, 1985. 28(239): p. 899-904.
    [34] Yhland, E., A linear theory of vibrations caused by ball bearings with form errors operating at moderate speed. Journal of tribology, 1992. 114(2): p. 348-359.
    [35] Akturk, N., M. Uneeb, and R. Gohar, The effects of number of balls and preload on vibrations associated with ball bearings. Journal of tribology, 1997. 119(4): p. 747-753.
    [36] Tandon, N. and A. Choudhury, An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. 1997.
    [37] Jang, G. and S. Jeong, Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. Journal of Tribology, 2002. 124(1): p. 82-90.
    [38] Jang, G. and S.-W. Jeong, Vibration analysis of a rotating system due to the effect of ball bearing waviness. Journal of sound and vibration, 2004. 269(3-5): p. 709-726.
    [39] Sopanen, J. and A. Mikkola, Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2003. 217(3): p. 201-211.
    [40] Sopanen, J. and A. Mikkola, Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2: implementation and results. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2003. 217(3): p. 213-223.
    [41] Harsha, S., K. Sandeep, and R. Prakash, The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. International Journal of Mechanical Sciences, 2003. 45(4): p. 725-740.
    [42] Sawalhi, N. and R. Randall, Simulating gear and bearing interactions in the presence of faults: Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mechanical Systems and Signal Processing, 2008. 22(8): p. 1924-1951.
    [43] Sawalhi, N. and R. Randall, Simulating gear and bearing interactions in the presence of faults: Part II: Simulation of the vibrations produced by extended bearing faults. Mechanical Systems and Signal Processing, 2008. 22(8): p. 1952-1966.
    [44] Tadina, M. and M. Boltežar, Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. Journal of sound and vibration, 2011. 330(17): p. 4287-4301.
    [45] Gupta, P.K., Advanced dynamics of rolling elements. 2012: Springer Science & Business Media.
    [46] Petersen, D., C. Howard, N. Sawalhi, A.M. Ahmadi, and S. Singh, Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects. Mechanical Systems and Signal Processing, 2015. 50: p. 139-160.
    [47] Khanam, S., J. Dutt, and N. Tandon, Impact force based model for bearing local fault identification. Journal of Vibration and Acoustics, 2015. 137(5): p. 051002.
    [48] Niu, L., H. Cao, Z. He, and Y. Li, Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways. Journal of Manufacturing Science and Engineering, 2014. 136(4): p. 041015.
    [49] Niu, L., H. Cao, Z. He, and Y. Li, A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects. Journal of Sound and Vibration, 2015. 357: p. 207-232.
    [50] Niu, L., H. Cao, and X. Xiong, Dynamic modeling and vibration response simulations of angular contact ball bearings with ball defects considering the three-dimensional motion of balls. Tribology International, 2017. 109: p. 26-39.
    [51] 上銀科技, 滾珠螺桿技術手冊. 2016.
    [52] Harris, T.A., Rolling bearing analysis. 2001: John Wiley and sons.
    [53] Brewe, D.E. and B.J. Hamrock, Simplified solution for elliptical-contact deformation between two elastic solids. Journal of Lubrication Technology, 1977. 99(4): p. 485-487.
    [54] Goldsmith, W., Impact, the theory and physical behavior of colliding solids. 1964.
    [55] Mitsuya, Y., H. Sawai, M. Shimizu, and Y. Aono, Damping in vibration transfer through deep-groove ball bearings. Journal of tribology, 1998. 120(3): p. 413-420.
    [56] 朱效賢, 包絡譜分析於軸承故障診斷之探討暨工程應用. 國立中央大學機械工程研究所碩士論文, 2005.
    [57] PMI, 綜合技術型錄. 2016.
    [58] Tosha, K., D. Ueda, H. Shimoda, and S. Shimizu, A Study on P-S-N Curve for Rotating Bending Fatigue Test for Bearing Steel. Tribology Transactions, 2008. 51(2): p. 166-172.

    無法下載圖示 校內:2023-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE