| 研究生: |
胡太龢 Hu, Tai-Ho |
|---|---|
| 論文名稱: |
以厭氧甲烷系統處理光電產業製程廢水中TMAH之評估與菌相分析 Evaluation on Performance and Microbial Community of Methanogenic Degradation of TMAH-containing TFT-LCD Wastewater |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 硫酸 、硫化氫 、四甲基氫氧化銨 、厭氧甲烷化 |
| 外文關鍵詞: | TMAH, sulfate, hydrogen sulfide, Methaogenic condiction, Methanomethylovorans, Methanosarcina |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光電產業製程廢水中的四甲基氫氧化銨(tetramethylammonium hydroxide, TMAH)已被許多研究證實其生物降解的可行性,其中以厭氧甲烷化系統是為最合適的處理方式。但這研究結果是來自於實驗室規模的反應器,而就廢水處理場而言,其厭氧甲烷處理TMAH的功效及微生物組成的資訊尚屬匱乏。因此,本研究的目的即是去評估實場中TMAH藉由厭氧甲烷系統處理的效率與分析其中的微生物菌相,期望能提供一些深入的資訊以利未來的發展。
先進行評估實場中厭氧甲烷系統處理TMAH的功效以及了解在實場中所發現的化學物質對其處理功效的影響。首先採取一個實場中利用厭氧甲烷系統處理TMAH廢水的上流式厭氧污泥床(upflow anaerobic sludge blanket, UASB)的污泥進行TMAH降解試驗,根據其結果,其污泥可以於10小時內降解完2,000 mg L1的TMAH,並且其比降解速率可達19.2 mg-TMAH g-VSS1 hr1。接著再利用一個包含厭氧甲烷與傳統活性污泥(conventional activated sludge, CAS)系統的TMAH廢水生物處理程序污泥來進行試驗。由結果得知活性污泥系統可有效降解150 mg L1的TMAH,可是當TMAH濃度超過此量後,其比降解速率會開始減少。而厭氧甲烷系統則可穩定的降解1,000 mg L1的TMAH。此外,針對常見於光電產業製程廢水中的化學物質如界面活性劑(Surfactant 1與Surfactant 2),二甲基亞碸 (dimethyl sulfoxide, DMSO)與硫酸進行對TMAH厭氧甲烷化的抑制測試。由測試結果中發現界面活性劑Surfactant 1 (2,000–10,000 mg L1) 與Surfactant 2 (4,000–20,000 mg L1)會降低TMAH的比降解速率。就DMSO抑制測試而言,DMSO不會對TMAH厭氧甲烷化的過程造成抑制。就硫酸抑制測試中發現當硫酸濃度超過300 mg L1時,除了造成重大的延遲期外,亦明顯的降低TMAH的比降解速度。可是當厭氧污泥中的甲烷菌相改變後,硫酸(150–1,500 mg L1)不再對TMAH厭氧甲烷化的過程造成顯著的抑制。另外,根據16S rDNA與methyl coenzyme M reductase alpha subunit (mcrA) 功能性基因的定序及尾端修飾限制片段長度多型性(termal restriction fragment length polymorphism, T-RFLP)試驗的結果得知Methanomethylovorans 與Methanosarcina 此兩種甲烷菌群是UASB中主要的甲烷菌。
接著藉由設立一個實驗室等級的連續流反應器找出可能的TMAH降解者與釐清硫化物對TMAH厭氧甲烷化的影響。此反應器於操作期間可以穩定的降解1,000 mg L1的TMAH。所馴化的污泥可將解TMAH濃度至2,500 mg L1,並在TMAH濃度為2,000 mg L1有最大比降解速率,其值為39.2 mg-TMAH g-VSS1 hr1。於此章中,除了硫酸外,三甲基銨(trimethylamine, TMA)與硫化氫也同時測試是否會對TMAH厭氧甲烷化造成抑制。由試驗結果得知,TMA(100–2,000 mg L1)與硫酸(150–3,000 mg L1)不會對馴化污泥於TMAH厭氧甲烷化中造成任何的抑制,而硫化氫則被發現有顯著的抑制作用。當硫化氫的濃度由20增加至 70 mg L1時,其TMAH的比降解速率則會由23.5下降至4.4 mg-TMAH g-VSS1 hr1. 同時,由mcrA此功能性基因的活性測試中則會發現硫化氫會顯著的抑制TMAH厭氧甲烷化中的甲烷產生。此外,針對馴化污泥及篩菌試驗的菌相分析結果得知,Methanomethylovorans 與Methanosarcina此兩種甲烷菌群 是可能的TMAH降解者。
最後,為了探討Methanomethylovorans 與Methanosarcina此兩種甲烷菌群在TMAH厭氧甲烷化中的關係,於是利用不同濃度的TMAH降解試驗來進行甲烷菌的菌相監測。由結果得知當TMAH濃度為100 mg L1時,於Methanomethylovorans 為優勢菌群的環境中,Methanomethylovorans 與Methanosarcina 此兩者甲烷菌群均為TMAH降解者,但於Methanosarcina為優勢菌群的環境中,僅監測到Methanosarcina此甲烷菌群的活性。而當TMAH濃度為1,000 mg L1時,從結果得知無論在Methanomethylovorans 或 Methanosarcina為優勢菌群的環境中,Methanosarcina比Methanomethylovorans 優於將TMAH轉化為甲烷。此章的研究指出Methanomethylovorans較適合低TMAH的環境而Methanosarcina則適合高TMAH的環境。此外,為了能更進一步了解實廠中TMAH分解者的菌相分布,在批次試驗中所使用的整個分子生物分析方式也應用於三個實際的TMAH廢水處理廠。由監測結果發現除了
Methanomethylovorans 與Methanosarcina菌群外,尚發現Methanosaeta菌群於其中一個實廠中佔有顯著的甲烷菌群比例,但非TMAH的利用者。
Biological treatment of tetramethylammonium hydroxide (TMAH) containing thin-film-transistor liquid crystal display (TFT-LCD) wastewater was studied in lab-scale suggesting that methanogenic TMAH degradation is suitable for treating this kind of wastewater but the information like kinetics and microbial community in the full-scale bioprocess was lack. Therefore, the objective of this study was to evaluate the performance and microbial community of methanogenic TMAH degradation in the full-scale TMAH wastewater treatment to provide insight information in favor of future development.
Intially, the experiments were to evaluate the performance of methanogenic degradation of TMAH and the effects of putative inhibitors present in the full-scale treatment. Based on the experimental results of batch tests using the sludge obtained from a full-scale upflow anaerobic sludge blanket (UASB) treating TFT-LCD wastewater, the UASB sludge was able to degrade 2,000 mg L1 of TMAH within 10 hours and attained a specific degradation rate of 19.2 mg-TMAH g-VSS1 hr1. Subsequently, a bioprocess including methanogenic and aerobic treatments demonstrated the treating of TMAH wastewater with the full-scale plant. For the aerobic bioprocess like the conventional activated sludge (CAS), complete TMAH biodegradation can be achieved at the 150 mg L1 TMAH but reduction of the specific TMAH degradation occurred at TMAH concentration higher than it. Regarding the methanogenic treatment, the community of methanogens was able to achieve a stable TMAH removal efficiency even at an influent TMAH concentration of 1,000 mg L1. Furthermore, chemicals present in TFT-LCD wastewater including surfactants (Surfactant 1 and Surfactant 2), dimethylsulfoxide (DMSO), and sulfate were examined for their potential inhibitory effects on TMAH biodegradation under methanogenic condition. For surfactant inhibition, addition of Surfactant 1 (2,000–10,000 mg L1) and Surfactant 2 (4,000–20,000 mg L1) caused a decrease in specific TMAH degradation rate. For DMSO inhibition, the methanogenic TMAH degradation was not affected with the addition of DMSO (100–1,000 mg L1). For sulfate inhibition, addition of sulfate (150–1,500 mg L1) caused a substantial lag period and significantly reduced specific TMAH degradation rate, especially at concentrations > 300 mg L1, but the inhibition was much less severe when methanogenic community structure was changed. Additionally, the results of clone sequencing and terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rDNA gene and methyl coenzyme M reductase alpha subunit (mcrA) functional gene both suggested that Methanomethylovorans and Methanosarcina species were the dominant methanogens in the UASB responsible for TMAH degradation.
Furthermore, to clarify the effects of sulfur chemcials and responded TMAH degraders, a lab-scale continuous reactor was conducted in this study. The reactor was able to degrade 1,000 mg L1 TMAH stably during the operation. From the results of batch experiments with variety initial TMAH, the enriched sludge could degrade TMAH up to 2,500 mg L1 and the maximum specific degradation rate was 39.2 mg-TMAH g-VSS1 hr1 when TMAH concentration was 2,000 mg L1. Furthermore, chemicals like trimethylamine (TMA), sulfate, and hydrogen sulfide were also examined for their potential inhibitory effects to the enriched sludge. For TMA inhibition, the results showed that addition of TMA (100–2,000 mg L1) would not inhibit the TMAH degradation efficiency of enriched sludge. For sulfate inhibition, the addition of sulfate (150–3,000 mg L1) would affect methanogenic degradation of TMAH by the enriched sludge. The considerable inhibitor is hydrogen sulfide and it could decrease specific degradation rate of methanogenic TMAH degradation from 23.5 to 4.4 mg-TMAH g-VSS1 hr1 when the concentration of hydrogen sulfide increased from 20 to 70 mg L1. Furthermore, the expression of activity of mcrA gene during hydrogen sulfide inhibition indicated that hydrogen sulfide inhibited methane production of methanogenic TMAH degradation significantly. In addition, the results of microbial community in enriched sludge and isolation showed that Methanomethylovorans species dominated in the continuous reactor and Methanosarcina species were predominating in the isolation suggesting that these methanogens were the proposed TMAH degraders.
Finally, the composition of Methanomethylovorans and Methanosarcina species in TMAH degradation was also studied for the effects of different TMAH concentration to these two methaogen groups. When TMAH concentration was low (100 mg L1), Methanomethylovorans and Methanosarcina species were both responded TMAH degraders in a Methanomethylovorans-dominated environment but only Methanosarcina species were found in a Methanosarcina-dominated environment. When TMAH concentration was high (1,000 mg L1), Methanosarcina species were favored than Methanomethylovorans species to convert high TMAH to methane gas even in Methanomethylovorans-dominated or Methanosarcina-dominated environment. The results suggested that Methanomethylovorans species were favored in low TMAH condition whereas Methanosarcina species in high one. In addition, the molecular methodology of the bacth experiment is also used to investigate the methanogenic community in three different full-scale TMAH bioreactors and the results showed that not only Methanomethylovorans and Methanosarcina species were found in most bioreactors but Methanosaeta species were also found in one bioreactor. However, Methanosaeta species were not the proper TMAH degraders due to the results of activity.
References
Abeysinghe, D.C., Dasgupta, S., Boyd, J.T., Jackson, H.E. 2001. A novel MEMS pressure sensor fabricated on an optical fiber. Ieee Photonics Technology Letters, 13(9), 993-995.
Abraham, S.J., Criddle, W.J. 1985. Quantitative studies on the pyrolytic methylation of simple carboxylic-acids and phenols. Journal of Analytical and Applied Pyrolysis, 9(1), 53-64.
Acero, M.C., Esteve, J., Burrer, C., Gotz, A. 1995. Electrochemical etch-stop characteristics of TMAH-IPA Solutions. Sensors and Actuators a: Physical, 46(1-3), 22-26.
Anderson, G.K., Donnelly, T., Mckeown, K.J. 1982. Identification and control of inhibition in the anaerobic treatment of industrial wastewaters. Process Biochemistry, 17(4), 28-32.
Anthony, C. 1982. The biochemistry of methylotrophs. Academic Press, Lodon.
APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. APHA American Public Health Association, Washington D.C.
Asakawa, S., Sauer, K., Liesack, W., Thauer, R.K. 1998. Tetramethylammonium : coenzyme M methyltransferase system from Methanococcoides sp. Archives of Microbiology, 170(4), 220-226.
Balch, W., Fox, G., Magrum, L., Woese, C., Wolfe, R. 1979. Methanogens: reevaluation of a unique biological group. Microbiological Reviews, 43(2), 260.
Bapteste, É., Brochier, C., Boucher, Y. 2005. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea, 1(5), 353-363.
Barreiro, J.C., Capelato, M.D., Martin-Neto, L., Hansen, H.C.B. 2007. Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Research, 41(1), 55-62.
Calli, B., Durmaz, S., Mertoglu, B. 2006. Identification of prevalent microbial communities in a municipal solid waste landfill. Water Science and Technology, 53(8), 139-147.
Castro, H., Ogram, A., Reddy, K.R. 2004. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Applied and Environmental Microbiology, 70(11), 6559-6568.
Challinor, J.M. 1989. A Pyrolysis Derivatization gas-chromatography technique for the structural elucidation of some synthetic-polymers. Journal of Analytical and Applied Pyrolysis, 16(4), 323-333.
Chan, K.H., Chu, W. 2005. Model applications and mechanism study on the degradation of atrazine by Fenton's system. Journal of Hazardous Materials, 118(1-3), 227-237.
Chang, K.F., Yang, S.Y., You, H.S., Pan, J.R. 2008. Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. Ieee Transactions on Semiconductor Manufacturing, 21(3), 486-491.
Chen, T.K., Ni, C.H., Chen, J.N. 2003. Nitrification-denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health Part a: Toxic/Hazardous Substances & Environmental Engineering, 38(10), 2157-2167.
Chen, Y., Cheng, J.J., Creamer, K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource technology, 99(10), 4044-4064.
Cheng, M.M., Song, W.J., Ma, W.H., Chen, C.C., Zhao, J.C., Lin, J., Zhu, H.Y. 2008. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Applied Catalysis B: Environmental, 77(3-4), 355-363.
Chin, K.J., Lueders, T., Friedrich, M., Klose, M., Conrad, R. 2004. Archaeal community structure and pathway of methane formation on rice roots. Microbial ecology, 47(1), 59-67.
Chistoserdova, L., Vorholt, J.A., Thauer, R.K., Lidstrom, M.E. 1998. C-1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science, 281(5373), 99-102.
Colleran, E., Finnegan, S., Lens, P. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, 67(1), 29-46.
Colleran, E., Pender, S., Philpott, U., O'Flaherty, V., Leahy, B. 1998. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation, 9(3), 233-245.
Crocetti, G., Murto, M., Bjornsson, L. 2006. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). Journal of Microbiological Methods, 65(1), 194-201.
Daffonchio, D., De Biase, A., Rizzi, A., Sorlini, C. 1998. Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis. Fems Microbiology Letters, 164(2), 403-410.
De Bont, J., Van Dijken, J., Harder, W. 1981. Dimethyl sulfoxide and dimethyl sulfide as a carbon, sulfur and energy source for growth of Hyphomicrobium species. Journal of General Microbiology, 127(2), 315-323.
Demirel, B., Yenigun, O., Onay, T.T. 2005. Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40(8), 2583-2595.
Deng, Y. 2007. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. Journal of Hazardous Materials, 146(1-2), 334-340.
Deng, Y., Englehardt, J.D. 2006. Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694.
Dhillon, A., Lever, M., Lloyd, K.G., Albert, D.B., Sogin, M.L., Teske, A. 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Applied and Environmental Microbiology, 71(8), 4592-4601.
Downing, D.T. 1967. Analysis of aqueous solutions of organic acids by pyrolysis of their tetramethylammonium Salts in gas chromatograph. Analytical Chemistry, 39(2), 218-221.
Earl, J., Hall, G., Pickup, R., Ritchie, D., Edwards, C. 2003. Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequences. Microbial ecology, 46(2), 270-278.
Elferink, O., JWH, S., Visser, A., Hulshoff Pol, L.W., Stams, A.J.M. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2), 119-136.
Ellermann, J., Hedderich, R., Bocher, R., Thauer, R.K. 1988. The final step in methane formation: investigations with highly purified methyl-com reductase (component-c) from Methanobacterium thermoautotrophicum (strain Marburg). European Journal of Biochemistry, 172(3), 669-677.
Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., Thauer, R.K. 1997. Crystal structure of methyl coenzyme M reductase: The key enzyme of biological methane formation. Science, 278(5342), 1457-1462.
Fang, H.H.P., Liang, D., Zhang, T. 2007. Aerobic degradation of diethyl phthalate by Sphingomonas sp. Bioresource technology, 98(3), 717-720.
Ferrarese, E., Andreottola, G., Oprea, I.A. 2008. Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials, 152(1), 128-139.
Ferry, J.G. 1993. Methanogenesis: ecology, physiology, biochemistry & genetics. Springer, New York.
Freitag, T.E., Prosser, J.I. 2009. Correlation of methane production and functional gene transcriptional activity in a peat soil. Applied and Environmental Microbiology, 75(21), 6679-6687.
Garcia, J.L., Patel, B.K.C., Ollivier, B. 2000. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6(4), 205-226.
Garcia, M.T., Campos, E., Sanchez-Leal, J., Ribosa, I. 1999. Effect of the alkyl chain length on the anaerobic biodegradability and toxicity of quaternary ammonium based surfactants. Chemosphere, 38(15), 3473-3483.
Garrido-Ramirez, E.G., Theng, B.K.G., Mora, M.L. 2010. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review. Applied Clay Science, 47(3-4), 182-192.
Garrity, G.M., Holt, J.G. 2001. Phylum AII. Euryarchaeota phy. nov. in: Bergey’s Manual of Systematic Bacteriology, Springer, NewYork, pp. 211-355.
Gelin, P., Primet, M. 2002. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Applied Catalysis B: Environmental, 39(1), 1-37.
Grosskopf, R., Janssen, P.H., Liesack, W. 1998. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology, 64(3), 960-969.
Hales, B.A., Edwards, C., Ritchie, D.A., Hall, G., Pickup, R.W., Saunders, J.R. 1996. Isolation and identification of methanogen-specific DNA from blanket bog feat by PCR amplification and sequence analysis. Applied and Environmental Microbiology, 62(2), 668-675.
Hallam, S.J., Girguis, P.R., Preston, C.M., Richardson, P.M., DeLong, E.F. 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and Environmental Microbiology, 69(9), 5483-5491.
Hampton, D., Zatman, L. 1973. The metabolism of tetrametbylammoniuin chloride by bacterium 5H2. Biochemical Society Transactions, 1(3), 667-668
Harada, H., Uemura, S., Momonoi, K. 1994. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Research, 28(2), 355-367.
Hashimoto, M., Cabuz, C., Minami, K., Esashi, M. 1995. Silicon resonant angular rate sensor using eectromagnetic-excitation and capacitive detection. Journal of Micromechanics and Microengineering, 5(3), 219-225.
Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proceedings of the National Academy of Sciences of the United States of America, 76(1), 494-498.
Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A., Ikeda, M. 2001. An efficient treatment technique for TMAH wastewater by catalytic oxidation. IEEE Transactions on Semiconductor Manufacturing, 14(3), 202-206.
Ho, K.L., Chung, Y.C., Lin, Y.H., Tseng, C.P. 2008. Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1. Chemosphere, 72(2), 250-256.
Hsieh, K.L., Lu, Y.S. 2008. Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications, 34(1), 717-724.
Hu, T.H., Whang, L.M., Liu, P.W.G., Hung, Y.C., Chen, H.W., Lin, L.B., Chen, C.F., Chen, S.K., Hsu, S.F., Shen, W., Fu, R., Hsu, R. 2012. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresource Technology, 113, 303-310.
Huang, S.J. 2006. Bioprocess study and ecological dynamics of non-woven membrane bioreactor treating TFT-LCD wastewater, Master thesis, National Cheng Kung University, Taiwan, ROC.
Hungate, R., Macy, J. 1973. The roll-tube method for cultivation of strict anaerobes. Bulletins of the Ecological Research Committee, 17, 123-126.
Janicke, W. 1983. Chemische Oxidierbarkeit organischer Wasserinhaltsstoffe. WaBoLu Berichte, Dietrich Reimer Verlag.
Jiang, B., Parshina, S.N., van Doesburg, W., Lomans, B.P., Stams, A.J.M. 2005. Methanomethylovorans thermophila sp nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. International Journal of Systematic and Evolutionary Microbiology, 55, 2465-2470.
Juottonen, H., Galand, P.E., Yrjälä, K. 2006. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Research in microbiology, 157(10), 914-921.
Kanel, S.R., Neppolian, B., Jung, H.Y., Choi, H. 2004. Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries. Environmental Engineering Science, 21(6), 741-751.
Keltjens, J.T., Vogels, G.D. 1993. Conversion of methanol and methylamines to methane and carbon dioxide. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics, 253-303.
Knapp, J.S., Jenkey, N.D., Townsley, C.C. 1996. The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium. Biodegradation, 7(3), 183-189.
Koito, T., Tekawa, M., Toyoda, A. 1998. A novel treatment technique for DMSO wastewater. IEEE Transactions on Semiconductor Manufacturing, 11(1), 3-8.
Konig, H., Stetter, K.O. 1982. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralblatt Fur Bakteriologie Mikrobiologie Und Hygiene I Abteilung Originale C-Allgemeine Angewandte Und Okologische Mikrobiologie, 3(4), 478-490.
Lange, M., Ahring, B.K. 2001. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. Fems Microbiology Reviews, 25(5), 553-571.
Lee, D., Lee, M.K., Kang, K.J., Shin, C.S., Yun, J.H., Yum, D.Y., Lee, J.K., Park, K.D., Choi, H.J., Koo, B.T. 2004. Strain for decomposing TMAH, and method of wastewater treatment using the same. United State Patent, US 6770470 B2
Lei, C.N., Whang, L.M., Chen, P.C. 2010. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 81(1), 57-64.
Lettinga, G. 1995. Anaerobic Digestion and Waste Water Treatment Systems. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 67(1), 3-28.
Lin, C.Y., Chang, F.Y., Chang, C.H. 2001. Toxic effect of sulfur compounds on anaerobic biogranule. Journal of hazardous materials, 87(1), 11-21.
Lin, H.L. 2006. Study on reaction kinetics characteristics of thin-film transistor liquid crystal display wastewater by SBR bioreactor, Master thesis, National Cheng Kung University, Taiwan, ROC.
Liu, Y., Boone, D.R., Sleat, R., Mah, R.A. 1985. Methanosarcina mazei Lyc, a new methanogenic isolate which produces a disaggregating enzyme. Applied and Environmental Microbiology, 49(3), 608-613.
Lomans, B.P., Maas, R., Luderer, R., den Camp, H.J.M.O., Pol, A., van der Drift, C., Vogels, G.D. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Applied and environmental microbiology, 65(8), 3641-3650.
Lu, Y., Conrad, R. 2005. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309(5737), 1088-1090.
Lueders, T., Chin, K.J., Conrad, R., Friedrich, M. 2001. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environmental Microbiology, 3(3), 194-204.
Lueders, T., Friedrich, M. 2000. Archaeal population dynamics during sequential reduction processes in rice field soil. Applied and Environmental Microbiology, 66(7), 2732-2742.
Lueders, T., Friedrich, M.W. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology, 69(1), 320-326.
Luton, P.E., Wayne, J.M., Sharp, R.J., Riley, P.W. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology: Sgm, 148, 3521-3530.
Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J., Fry, J.C. 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. Fems Microbiology Ecology, 34(3), 221-228.
McCarty, P.L. 2001. The development of anaerobic treatment and its future. Water Science and Technology, 44(8), 149-156.
McKinney, D.E., Bortiatynski, J.M., Carson, D.M., Clifford, D.J., DeLeeuw, J.W., Hatcher, P.G. 1996. Tetramethylammonium hydroxide (TMAH) thermochemolysis of the aliphatic biopolymer cutan: Insights into the chemical structure. Organic Geochemistry, 24(6-7), 641-650.
McMurry, J. 2008. Organic Chemistry. Brooks/Cole, California.
Merlos, A., Acero, M., Bao, M.H., Bausells, J., Esteve, J. 1993. TMAH/IPA Anisotropic Etching Characteristics. Sensors and Actuators a: Physical, 37-38, 737-743.
Mrklas, O., Chu, A., Lunn, S. 2003. Determination of ethanolamine, ethylene glycol and triethylene glycol by ion chromatography for laboratory and field biodegradation studies. Journal of Environmental Monitoring, 5(2), 336-340.
Ndegwa, A.W., Wong, R.C.K., Chu, A., Bentley, L.R., Lunn, S.R.D. 2004. Degradation of monoethanolamine in soil. Journal of Environmental Engineering and Science, 3(2), 137-145.
Nogueira, R.F.P., Trovo, A.G., da Silva, M.R.A., Villa, R.D., de Oliveira, M.C. 2007. Fundaments and environmental applications of fenton and photo-Fenton processes. Quimica Nova, 30(2), 400-408.
Nunez, L., Garcia-Hortal, J.A., Torrades, F. 2007. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes and Pigments, 75(3), 647-652.
O'Mara, W.C. 1993. Liquid crystal flat panel displays: manufacturing science & technology. Van Nostrand Reinhold, New York.
Ohara, M., Katayama, Y., Tsuzaki, M., Nakamoto, S., Kuraishi, H. 1990. Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. International Journal of Systematic Bacteriology, 40(3), 292-296.
Orphan, V., Taylor, L., Hafenbradl, D., Delong, E. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Applied and Environmental Microbiology, 66(2), 700-711.
Papet, P., Nichiporuk, O., Fave, A., Kaminski, A., Bazer-Bachi, B., Lemiti, M. 2006. TMAH texturisation and etching of interdigitated back-contact solar cells. Materials Science: Poland, 24(4), 1043-1049
Park, S.J., Yoon, T.I., Bae, J.H., Seo, H.J., Park, H.J. 2001. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 36(6), 579-589.
Pearce, C.I., Lloyd, J.R., Guthrie, J.T. 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58(3), 179-196.
Peck, J.E. 2010. Multivariate Analysis for Community Ecologists: Step-by-Step Using PC-ORD. MjM Software Design, Gleneden Beach, Oregon, USA
Popiel, S., Witkiewicz, Z., Chrzanowski, M. 2008. Sulfur mustard destruction using ozone, UV, hydrogen peroxide and their combination. Journal of Hazardous Materials, 153(1-2), 37-43.
Primo, O., Rivero, M.J., Ortiz, I. 2008. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842.
Purdy, K.J., Nedwell, D.B., Embley, T.M. 2003. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Applied and Environmental Microbiology, 69(6), 3181-3191.
Raskin, L., Stromley, J.M., Rittmann, B.E., Stahl, D.A. 1994. Group-specific 16s ribosomal-RNA hybridization probes to describe natural communities of methanogens. Applied and Environmental Microbiology, 60(4), 1232-1240.
Rastogi, G., Ranade, D.R., Yeole, T.Y., Patole, M.S., Shouche, Y.S. 2008. Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresource Technology, 99(13), 5317-5326.
Rittmann, B.E., McCarty, P.L. 2001. Environmental biotechnology: principles and applications. McGraw-Hill, Ohio.
Robb, E.W., Westbroo.Jj. 1963. Preparation of methyl esters for gas liquid chromatography of acids by pyrolysis of tetramethylammonium salts. Analytical Chemistry, 35(11), 1644-1647.
Rochelle, P.A. 2001. Environmental molecular microbiology: protocols and applications. Horizon Scientific Press, United Kindom.
Saengkerdsub, S., Herrera, P., Woodward, L., Anderson, C., Nisbet, D.J., Ricke, S.C. 2007. Detection of methane and quantification of methanogenic archaea in faeces from young broiler chickens using real-time PCR. Letters in Applied Microbiology, 45(6), 629-634.
Sakar, S., Yetilmezsoy, K., Kocak, E. 2009. Anaerobic digestion technology in poultry and livestock waste treatment: a literature review. Waste Management & Research, 27(1), 3-18.
Sarkar, B., Megharaj, M., Xi, Y.F., Krishnamurti, G.S.R., Naidu, R. 2010. Sorption of quaternary ammonium compounds in soils: Implications to the soil microbial activities. Journal of Hazardous Materials, 184(1-3), 448-456.
Sasaki, D., Hori, T., Haruta, S., Ueno, Y., Ishii, M., Igarashi, Y. 2011. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. Journal of Bioscience and Bioengineering, 111(1), 41-46.
Sawayama, S., Tsukahara, K., Yagishita, T. 2006. Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresource Technology, 97(1), 69-76.
Sekiguchi, Y., Kamagata, Y., Harada, H. 2001a. Recent advances in methane fermentation technology. Current Opinion in Biotechnology, 12(3), 277-282.
Sekiguchi, Y., Takahashi, H., Kamagata, Y., Ohashi, A., Harada, H. 2001b. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Applied and Environmental Microbiology, 67(12), 5740-5749.
Senturk, E., Ince, M., Engin, G.O. 2010. Kinetic evaluation and performance of a mesophilic anaerobic contact reactor treating medium-strength food-processing wastewater. Bioresource Technology, 101(11), 3970-3977.
Shadkami, F., Helleur, R. 2010. Recent applications in analytical thermochemolysis. Journal of Analytical and Applied Pyrolysis, 89(1), 2-16.
Simankova, M.V., Kotsyurbenko, O.R., Lueders, T., Nozhevnikova, A.N., Wagner, B., Conrad, R., Friedrich, M.W. 2003. Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Systematic and Applied Microbiology, 26(2), 312-318.
Sizova, M.V., Panikov, N.S., Tourova, T.P., Flanagan, P.W. 2003. Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. Fems Microbiology Ecology, 45(3), 301-315.
Sowers, K.R., Baron, S.F., Ferry, J.G. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine-sediments. Applied and Environmental Microbiology, 47(5), 971-978.
Sowers, K.R., Ferry, J.G. 1983. Isolation and Characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Applied and environmental microbiology, 45(2), 684-690.
Speece, R.E. 1983. Anaerobic Biotechnology for Industrial Wastewater Treatment. Environmental Science and Technology, 17(9), A416-A427.
Speece, R.E. 1996. Anaerobic Biotechnology: For Industrial Wastewaters. Archae Press, Nashville, Tennessee.
Springer, E., Sachs, M.S., Woese, C.R., Boone, D.R. 1995. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. International Journal of Systematic Bacteriology, 45(3), 554-559.
Steinberg, L.M., Regan, J.M. 2009. mcrA-Targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 75(13), 4435-4442.
Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K., Sugiyama, S. 1992. Anisotropic etching of silicon in TMAH solutions. Sensors and Actuators a: Physical, 34(1), 51-57.
Tabata, O., Asahi, R., Sugiyama, S. 1991. Anisotropic etching of silicon with quarternary ammonium hydroxide solutions. in: Technical digest of the 9th sensor symposium. Tokyo, Japan, 15-18.
Takai, K., Moser, D.P., DeFlaun, M., Onstott, T.C., Fredrickson, J.K. 2001. Archaeal diversity in waters from deep South African gold mines. Applied and Environmental Microbiology, 67(12), 5750-5760.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.
Tanaka, K. 1994. Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. Journal of Fermentation and Bioengineering, 78(5), 386-388.
Tang, Y.Q., Shigematsu, T., Morimura, S., Kida, K. 2007. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Applied microbiology and biotechnology, 75(2), 451-465.
Tezel, U., Pierson, J.A., Pavlostathis, S.G. 2006. Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Research, 40(19), 3660-3668.
Thauer, R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology: Uk, 144, 2377-2406.
Urakami, T., Araki, H., Kobayashi, H. 1990. Isolation and identification of tetramethylammonium-biodegrading bacteria. Journal of Fermentation and Bioengineering, 70(1), 41-44.
Veit, K., Ehlers, C., Schmitz, R.A. 2005. Effects of nitrogen and carbon sources on transcription of soluble methyltransferases in Methanosarcina mazei strain Go1. Journal of Bacteriology, 187(17), 6147-6154.
Ventura, A., Jacquet, G., Bermond, A., Camel, V. 2002. Electrochemical generation of the Fenton's reagent: application to atrazine degradation. Water Research, 36(14), 3517-3522.
Walker, J., Johnston, J. 1905. Tetramethylammonium hydroxide. Journal of the Chemical Society, 87, 955-961.
Watson, M.K., Tezel, U., Paulostathis, S.G. 2012. Biotransformation of alkanoylcholines under methanogenic conditions. Water Research, 46(9), 2947-2956.
Whitman, W., Bowen, T., Boone, D., Balows, A., Truper, H., Dworkin, M., Harder, W., Schleifer, K. 1992. The methanogenic bacteria. Springer, New York.
Wu, C.L., Su, S.B., Chen, J.L., Lin, H.J., Guo, H.R. 2008. Mortality from dermal exposure to tetramethylammonium hydroxide. Journal of Occupational Health, 50(2), 99-102.
Yang, K., Yu, Y., Hwang, S. 2003. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Research, 37(10), 2467-2477.
Yu, Y., Kim, J., Hwang, S. 2006. Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: Population dynamics and community structures. Biotechnology and Bioengineering, 93(3), 424-433.
Zhang, T.C., Noike, T. 1994. Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes. Water Research, 28(1), 27-36.
Zhu, C.G., Zhang, J.Y., Tang, Y.P., Xu, Z.K., Song, R.T. 2011. Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiological Research, 166(1), 27-35.
Zhu, H.X., Holl, M., Ray, T., Bhushan, S., Meldrum, D.R. 2009. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition. Journal of Micromechanics and Microengineering, 19(6), no. 065013.
校內:2022-03-26公開