研究生: |
朱紀華 Chu, Chi-Hua |
---|---|
論文名稱: |
增加生物可降解性鎂合金AZ61的表面粗糙度及提高其抗腐蝕能力之研究 The Improvement of Surface Roughness and Corrosion Resistance for Biodegradable AZ61 Magnesium Alloy |
指導教授: |
王清正
Wang, Ching-Cheng 李澤民 Lee, Tzer-Min |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 鎂合金 、吹砂處理 、化成處理 、鈣磷水熱法 、抗腐蝕能力 |
外文關鍵詞: | magnesium alloy, sandblasting, conversion coating, hydrothermal, corrosion resistance |
相關次數: | 點閱:167 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂合金在生醫材料中,其基本機械性質整體來說是最為接近人體骨骼,所以在人工植體的領域中有機會超越目前臨床常被使用的鈦合金及鈷鉻合金,且鎂合金相對於鈦合金最大的特色為具有生物可降解性,在植入人體後降解的成分可刺激骨細胞活性,並可經由泌尿系統排出體外,對人體的傷害可以降到最低。但生物醫療等級的鎂合金在人體中其抗腐蝕能力太差,從浸泡模擬體液的實驗結果中,得知因鎂合金降解速率太快,使得植體表面大量的釋放出氫氣進而影響植體周圍的pH值上升,最終導致身體之異常反應。
為了改進鎂合金其抗腐蝕能力,本研究使用sandblasting噴砂技術,使鎂合金表面形成具有微米級粗糙度的表面,藉此提高試片總表面積。然後再使用flouride conversion coating氟化成表面處理,使試片表面長出均質且緻密之氟化成皮膜,以提高生醫級鎂合金的抗腐蝕能力。最後再使用水熱爐進行鈣磷水熱處理,讓鈣磷化合物沉積在試片表面上,使此試片具有良好生物親和性。在材料測試中,以SEM、EDS、試片重量變化、pH值的量測結果進行評估,均可以看出經過噴砂處理後的氟化成保護膜其抗腐蝕能力明顯優於未經噴砂處理的試片。在體外測試中,當細胞貼附於材料表面時,會受到材料的親疏水性、表面電荷、表面粗糙度及多孔性質的影響,從本實驗細胞形貌及細胞增生的實驗結果中,具有表面粗糙的試片,其細胞的初期貼附很快的就有觸角生成,有鈣磷塗層的試片細胞增生的情形也是明顯的。且有鈣磷塗層的試片,不僅在細胞初期貼附的表現優良,其細胞增生的表現更為突出。
進一步進行體內測試-兔子動物實驗,經由植入四週後的觀察也確定其軟組織生長及骨癒合效果顯著,並且鎂合金的腐蝕行為也相當緩和。
因此本研究將探討經由吹砂、化成處理及鈣磷水熱法後的鎂鋁合金(AZ61)對表面粗糙度與抗腐蝕性的影響。相對於對照組的鎂合金,有MgF2保護層的表面,可以藉此提高抗腐蝕的能力。
上述的實驗結果顯示,經由本實驗一系列的表面改質後,可以使我們的生醫級可降解鎂合金AZ61,在植入人體後,不僅具有良好的抗腐蝕性、細胞貼附和細胞增生等性質,且又可以免除二次手術,可以減低病患的痛苦,提供病患一個更舒適的選擇。
In biomaterials , the mechanical properties of magnesium alloy is closest to human bone. In addition, its excellent of biodegradablility tends to be more appropriate than Titanium and Cobalt-chromium. Besides, it could decrease the damage to the human body through its degradation to motivate osteoclasts activity and it is decomposable to digestive system. Nevertheless, magnesium is susceptible to corrosion as revealed by experiments using simulation liquid immersing or clinic. Meanwhile, it could reflect resistance reaction from human body. The fast degradation of this material could led surface of objective releases hydrogen and pH value.
In this study, sandblasting is applied to create rough surface on magnesium resulting in increased total surface area. Afterwards, flouride conversion coating are utilized in the following steps. In this stage, the intention is to raise its resistance ability to fluorinated by creating a homogenized MgF2 layer on magnesium. Finally, elevate the biodegradablility would be reached through immersing in Ca-P solution by hydrothermal. Following material analysis, SEM, EDS, pH value experience result, we confirm that sandblasting improves corrosion resistance.In vitro test, the factors of hydrophilic or hydrophobic of material, electric charge, and porosity of surface would be affected to the problem of cell adhering. In vivo test-rabbit experiment, after implantation through four weeks, also observed obvious growth of soft tissue and bone healing effect. In addition, the corrosion behavior of magnesium alloys appears quite ease.
The result of this report based on cell morphology and cell proliferation illustrates magnesium alloys with rough surface and coating with Ca-P compound tend to have a similar outcome on the first period. The Proliferation of cell tends to be evidently in equal. Nonetheless, on the following stage the objective coating with Ca-P compound continuously has proliferation activity, which indicates it could achieve greater views.
[1] S. S. Hou, R. R. Zhang, S. K. Guan, C. X. Ren, J. H. Gao, Q. B. Lu, et al., "In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg–Zn–Y–Nd alloy," Applied Surface Science, vol. 258, pp. 3571-3577, 2012.
[2] J. Yang, F. Cui, and I. S. Lee, "Surface modifications of magnesium alloys for biomedical applications," Ann Biomed Eng, vol. 39, pp. 1857-71, Jul 2011.
[3] T. L. Nguyen, A. Blanquet, M. P. Staiger, G. J. Dias, and T. B. Woodfield, "On the role of surface roughness in the corrosion of pure magnesium in vitro," J Biomed Mater Res B Appl Biomater, vol. 100, pp. 1310-8, Jul 2012.
[4] J. Brinkmann, T. Hefti, F. Schlottig, N. D. Spencer, and H. Hall, "Response of osteoclasts to titanium surfaces with increasing surface roughness: an in vitro study," Biointerphases, vol. 7, p. 34, Dec 2012.
[5] X. B. Chen, N. Birbilis, and T. B. Abbott, "A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium," Corrosion Science, vol. 53, pp. 2263-2268, 2011.
[6] " 闕山璋,“骨科植入物生醫材料及器材”,科儀新知, 第十三卷, 第一期, 1991.," pp. 736-747.
[7] C. Castellani, R. A. Lindtner, P. Hausbrandt, E. Tschegg, S. E. Stanzl-Tschegg, G. Zanoni, et al., "Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control," Acta Biomater, vol. 7, pp. 432-40, Jan 2011.
[8] X. B. Chen, H. Y. Yang, T. B. Abbott, M. A. Easton, and N. Birbilis, "Magnesium: Engineering the Surface," Jom, vol. 64, pp. 650-656, 2012.
[9] "Balance of Magnesium Positively Correlates with That of Calcium," Journal of the American College of Nutrition, Vol. 23, No. 6, 768S–770S (2004).
[10] L. Mao, G. Yuan, J. Niu, Y. Zong, and W. Ding, "In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment," Materials Science and Engineering: C, vol. 33, pp. 242-250, 2013.
[11] S. G. Du, Y. L. Lu, Y. K. Chen, Y. Guo, and Q. Hong, "Formation and Performance of Cerium Silane Mixture Conversion Coatings on AZ91 Magnesium Alloy," Advanced Materials Research, vol. 197-198, pp. 387-395, 2011.
[12] Z. Grubač, I. Škugor Rončević, M. Metikoš-Huković, R. Babić, M. Petravić, and R. Peter, "Surface Modification of Biodegradable Magnesium Alloys," Journal of The Electrochemical Society, vol. 159, p. C253, 2012.
[13] M. Shahnewaz Bhuiyan and Y. Mutoh, "Corrosion fatigue behavior of conversion coated and painted AZ61 magnesium alloy," International Journal of Fatigue, vol. 33, pp. 1548-1556, 2011.
[14] D. Dziuba, A. Meyer-Lindenberg, J. M. Seitz, H. Waizy, N. Angrisani, and J. Reifenrath, "Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant," Acta Biomater, Aug 23 2012.
[15] H. Hornberger, S. Virtanen, and A. R. Boccaccini, "Biomedical coatings on magnesium alloys - a review," Acta Biomater, vol. 8, pp. 2442-55, Jul 2012.
[16] M. T. Yeh, "Effect of heat treatment on mechanical properties and corrosion behavior of AZ80+2wt%Li Magnesium alloy," NTU, 2010.
[17] J. P. Long, S. J. Hollister, and S. A. Goldstein, "A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation," J Biomech, vol. 45, pp. 2651-7, Oct 11 2012.
[18] X. P. Zhang, Z. P. Zhao, F. M. Wu, Y. L. Wang, and J. Wu, "Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution," Journal of Materials Science, vol. 42, pp. 8523-8528, 2007.
[19] S. Hiromoto and M. Tomozawa, "Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution," Surface and Coatings Technology, vol. 205, pp. 4711-4719, 2011.
[20] M. Jamesh, S. Kumar, and T. S. N. Sankara Narayanan, "Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications," Journal of Coatings Technology and Research, vol. 9, pp. 495-502, 2011.
[21] H. M. Wong, K. W. Yeung, K. O. Lam, V. Tam, P. K. Chu, K. D. Luk, et al., "A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants," Biomaterials, vol. 31, pp. 2084-96, Mar 2010.
[22] J.-Y. Uan, J.-K. Lin, Y.-S. Sun, W.-E. Yang, L.-K. Chen, and H.-H. Huang, "Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods," Thin Solid Films, vol. 518, pp. 7563-7567, 2010.
[23] Y. Z. Wan, G. Y. Xiong, H. L. Luo, F. He, Y. Huang, and Y. L. Wang, "Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys," Applied Surface Science, vol. 254, pp. 5514-5516, 2008.
[24] J. Wang, J. Tang, P. Zhang, Y. Li, J. Wang, Y. Lai, et al., "Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review," J Biomed Mater Res B Appl Biomater, vol. 100, pp. 1691-701, Aug 2012.
[25] Z. Wen, C. Wu, C. Dai, and F. Yang, "Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid," Journal of Alloys and Compounds, vol. 488, pp. 392-399, 2009.
[26] Y. Zhu, G. Wu, Y.-H. Zhang, and Q. Zhao, "Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31," Applied Surface Science, vol. 257, pp. 6129-6137, 2011.
[27] T.-T. Wan, Z.-X. Liu, M.-Z. Bu, and P.-C. Wang, "Effect of surface pretreatment on corrosion resistance and bond strength of magnesium AZ31 alloy," Corrosion Science, vol. 66, pp. 33-42, 2013.
[28] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, "Magnesium and its alloys as orthopedic biomaterials: a review," Biomaterials, vol. 27, pp. 1728-34, Mar 2006.
[29] Despina D. Deligianni, Nikoleta D. Katsala, Petros G. Koutsoukos, and Y. F. Missirlis, "Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, di!erentiation and detachment strength," Biomaterials 22 (2001) 87-96.
[30] C. Xu, F. Yang, S. Wang, and S. Ramakrishna, "In vitro study of human vascular endothelial cell function on materials with various surface roughness," J Biomed Mater Res A, vol. 71, pp. 154-61, Oct 1 2004.
[31] Z. S. J. Y. Martin, J. Simpson,J. Lankford, "Effect of titanium surface roughness on moliferation,differentiation, and rotein synthesis of Ahurnan osteoblast-like cells P MG63)," Journal of Biomedical Materials Research, Vol. 29, 389-401 (1995).
[32] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. TenHuisen, "Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution," Journal of Solid State Chemistry, vol. 177, pp. 793-799, 2004.
[33] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. TenHuisen, "Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method," Biomaterials, vol. 25, pp. 4647-57, Aug 2004.
[34] F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, et al., "Biodegradable magnesium-hydroxyapatite metal matrix composites," Biomaterials, vol. 28, pp. 2163-74, Apr 2007.
[35] B. L. J.E. Gray, "Protective coatings on magnesium and its alloys — a critical review," Journal of Alloys and Compounds 336 (2002) 88–113.
[36] K. Z. Chong and T. S. Shih, "Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution," Materials Chemistry and Physics, vol. 80, pp. 191-200, 2003.
[37] A. R. Shashikala1, R. U. , S. M. M. , and and A. K.Sharma1, "Chemical Conversion Coatings on Magnesium Alloys - A Comparative Study," Int. J. Electrochem. Sci., 3 (2008) 993 - 1004
[38] D. C.-J. H. Ming-Feng Wu "The Study of the Fabrication Parameters of Micro-arc Oxidation on Hydroxyapatite Coating on Pure Titanium Plate," NTTU, 2009.
[39] P. M.-R. Y. Po-Jung Hsu, "The influence of duty ratio and frequency of pulsed bipolar microarc oxidation on the properties of the oxide ceramic coatings of 7075-T6 Al alloy," NTTU, 2009.
[40] H. H. Huang, C. T. Ho, T. H. Lee, T. L. Lee, K. K. Liao, and F. L. Chen, "Effect of surface roughness of ground titanium on initial cell adhesion," Biomol Eng, vol. 21, pp. 93-7, Nov 2004.
[41] X. N. Gu, W. Zheng, Y. Cheng, and Y. F. Zheng, "A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate," Acta Biomater, vol. 5, pp. 2790-9, Sep 2009.
[42] Y. Hsieh, Y. Du, F. Jin, Z. Zhou, and H. Enomoto, "Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid," Chemical Engineering Research and Design, vol. 87, pp. 13-18, 2009.
[43] K. Li, B. Wang, B. Yan, and W. Lu, "Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior," Chinese Science Bulletin, vol. 57, pp. 2319-2322, 2012.
[44] M. B. Kannan, "Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance," J Biomed Mater Res A, vol. 101, pp. 1248-54, May 2013.
[45] B. Kasemo, "Biological surface science," Surface Science, 2001.
[46] M. Moravej and D. Mantovani, "Biodegradable metals for cardiovascular stent application: interests and new opportunities," Int J Mol Sci, vol. 12, pp. 4250-70, 2011.
[47] C. J. 陈. 君. ZENG Rong-chang(曾荣昌)1, W. Dietzel2, N. Hort2, K.U. Kainer2, "Electrochemical behavior of magnesium alloys in simulated body fluids," 1, Trans. Nonferrous Met. Soc. China17(2007).
[48] X.-N. Gu and Y.-F. Zheng, "A review on magnesium alloys as biodegradable materials," Frontiers of Materials Science in China, vol. 4, pp. 111-115, 2010.
[49] J. Z. a. C. Wu, "Corrosion and Protection of Magnesium Alloys - A Review of the Patent Literature," Recent Patents on Corrosion Science, 2010, 2, 55-68.
[50] T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?," Biomaterials, vol. 27, pp. 2907-2915, May 2006.