簡易檢索 / 詳目顯示

研究生: 黃昱惟
Huang, Yu-Wei
論文名稱: 全無機銫鉛溴化物鈣鈦礦微米半球之載子複合動力學研究
Charge Carrier Recombination Dynamics in All-inorganic Cesium Lead Bromide Perovskite Micro-hemispheres
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 79
中文關鍵詞: 溴化銫鉛鈣鈦礦缺陷複合激子複合自由載子複合溫度載子複合動力學
外文關鍵詞: CsPbBr3, perovskite, trap-mediated recombination, excitonic recombination, free carrier recombination, temperature, charge carrier recombination dynamic
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全無機金屬鹵化鉛鈣鈦礦於近期因較高的熱穩定度以及光致發光量子轉換效率,已廣泛應用於各類型的光電元件,如:光電偵測器、發光二極體、太陽能電池以及雷射,因此受光激發載流子複合機制也廣泛地被討論,然而全無機鹵化物鈣鈦礦中的載流子複合機制尚未被完整地討論。
    在本篇論文中,我們利用化學氣相沉積法成功地製造出溴化銫鉛鈣鈦礦微米半球晶體,並透過激發功率相關光致發光(PL)光譜的分析,我們觀察到缺陷複合在低激發功率下主導了整個載流子複合動力學。隨著入射光致載子密度增加並大於缺陷填充密度時,此時缺陷複合達到動態平衡,激子以及自由載子複合出現。接著為了計算單載流子(分子)複合速率,如:缺陷複合速率、激子複合速率以及雙載流子(分子)複合速率,如:自由載子複合速率等效常數,我們進行了激發功率相關時間解析光致發光(TRPL)光譜量測,並導入了ABC模型中的載流子複合方程式分析結果。接下來我們藉由在大氣以及真空環境中量測缺陷複合速率,來討論氧氣對於鈣鈦礦晶體的缺陷修復。最後由於溫度會改變光電元件的光學特性,環境溫度以及自熱效應皆會影響元件的表現。因此我們在不同溫度下量測溴化銫鉛鈣鈦礦不同載流子複合機制速率,以觀察溫度對溴化銫鉛鈣鈦礦光致發光的影響,並觀察到在相變溫度361 K時,載子複合速率的確發生了明顯變化。本研究為了解雷射、發光二極體以及太陽能電池等全無機鈣鈦礦光學元件技術發展的關鍵。

    In recent years, all-inorganic halide perovskite has been attracted massive attention in various fields such as photodetectors, light emitting diodes, solar cells, and lasers. However, the charge carrier recombination dynamics in all-inorganic halide perovskite have not been fully understood. Herein, the cesium lead bromide (CsPbBr3) micro-hemispheres were fabricated by a chemical vapor deposition (CVD). By performing power-dependent photoluminescence (PL) measurement, we found the trap-mediated recombination dominates the whole charge carrier recombination dynamic upon a low excitation power regime. As the trap states are filled by the photo-excited electrons with increasing excitation power, the carrier recombination is dominated by excitons and free carriers. To estimate the monomolecular recombination rate and bimolecular recombination rate constant, which are related to the trap-mediated/excitonic recombination and free-carrier recombination, respectively, we utilized power-dependent time-resolved PL (TRPL) measurement with the ABC model. In addition, the passivation effect of oxygen on PL properties in perovskite was investigated under the ambient atmosphere as well as the vacuum environment. To gain deep insight into the radiative and/or non-radiative recombination processes, the temperature-dependent TRPL measurements were done. A significant change in the charge carrier recombination rates was observed across the structural phase transition temperature occurring around 361 K. This work is the key to better understanding the development of the advanced laser, light-emitting diodes, solar cells, and other optical and electronic devices of all-inorganic halide perovskites.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1. Preface 1 1.2. Perovskite Historical Review 2 1.3. Motivation 10 Chapter 2. Physical Theories 11 2.1. Characteristics of Perovskites 11 2.1.1. Structural Properties 11 2.1.2. Oxygen Passivation for Perovskite 15 2.1.3. Optical Properties 17 2.1.3.1. Fundamental Optical Properties 17 2.1.3.2. Photoluminescence 18 2.2. Derivation of Simplified Charge Carrier Recombination Rate Equation in the ABC Model 20 2.3. Estimation of Photocarrier Density 22 2.4. Langevin Theory 24 2.5. Carrier-Phonon Coupling and Polarons 26 Chapter 3. Experimental Sections 28 3.1. Synthesis of CsPbBr3 Perovskite Micro-hemispheres 28 3.2. Analysis of CsPbBr3 Morphologies and Structures 31 3.2.1. Optical Microscope 31 3.2.2. Scanning Electron Microscope (SEM) 32 3.2.3. X-Ray Diffraction (XRD) 33 3.3. Optical Properties of CsPbBr3 35 3.3.1. Micro-Photoluminescence (μ-PL) 35 3.3.2. Micro-Optical Absorption 36 3.3.3. Time-Resolved Photoluminescence (TRPL) 37 3.3.4. Pressure-Controlling Sample Holder 40 3.3.5. Temperature-Controlling Sample Holder 41 Chapter 4. Results and Discussions 42 4.1. Morphology and Structure Analysis 42 4.1.1. Optical Microscope and SEM Images 42 4.1.2. XRD Analysis 43 4.2. Fundamental Optical Properties 44 4.2.1. PL and Optical Absorption 44 4.2.2. Excitation Power-Dependent PL 45 4.3. Charge Carrier Recombination Rates in CsPbBr3 47 4.3.1. TRPL Analysis 48 4.3.2. Excitation-Power-Dependent TRPL Measurement 49 4.3.3. Trap-Mediated Recombination Rate 52 4.3.4. Excitonic Recombination Rate 52 4.3.5. Free Carrier Recombination Rate Constant 53 4.4. Oxygen Passivation Effect for CsPbBr3 56 4.5. Temperature Effect to Charge Carrier Recombination Dynamic 58 4.5.1. Temperature-Dependent Trap-Mediated Recombination Rate 64 4.5.2. Temperature-Dependent Excitonic Recombination Rate 66 4.5.3. Temperature-Dependent Free Carrier Recombination Rate Constant 67 4.5.4. Temperature-Dependent Internal Photoluminescence Quantum Yield 70 Chapter 5. Conclusions and Future Works 72 5.1. Conclusions 72 5.2. Future Works 73 Reference 74

    1 W. Cai, Z. Chen, D. Chen, S. Su, Q. Xu, H.-L. Yip, and Y. Cao, RSC Advances 9 (47), 27684 (2019).
    2 C.-S. Wu, S.-C. Wu, B.-T. Yang, Z. Y. Wu, Y. H. Chou, P. Chen, and H.-C. Hsu, ACS Applied Materials & Interfaces (2021) 13 (11), 13556 (2021)..
    3 J. P. Deng, J. L. Li, Z. Yang, and M. Q. Wang, Journal of Materials Chemistry C 7 (40), 12415 (2019).
    4 L. Jiang, Z. Fang, H. Lou, C. Lin, Z. Chen, J. Li, H. He, and Z. Ye, Physical Chemistry Chemical Physics 21 (39), 21996 (2019).
    5 J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, and Z. Hens, The Journal of Physical Chemistry Letters 9 (11), 3093 (2018).
    6 B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, Physical Chemistry Chemical Physics 19 (26), 17349 (2017).
    7 N. A. N. Ouedraogo, Y. C. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, and Y. Z. Zhang, Nano Energy 67, 104249 (2020).
    8 Y. Yang, M. Yang, Z. Li, R. Crisp, K. Zhu, and M. C. Beard, The Journal of Physical Chemistry Letters 6 (23), 4688 (2015).
    9 Y. Li, Q. Shu, Q. Du, Y. Dai, S. Zhao, J. Zhang, L. Li, and K. Chen, ACS Applied Materials & Interfaces 12 (1), 451 (2019).
    10 S. B. Naghadeh, S. Sarang, A. Brewer, A. L. Allen, Y.-H. Chiu, Y.-J. Hsu, J.-Y. Wu, S. Ghosh, and J. Z. Zhang, The Journal of Chemical Physics 151 (15), 154705 (2019).
    11 Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang, Nano Today 10 (3), 355 (2015).
    12 G. Rose, Annalen der Physik 124 (12), 551 (1839).
    13 Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, Nanoscale Advances 1 (4), 1276 (2019).
    14 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131 (17), 6050 (2009).
    15 Best PCE of research-cell chart, https://www.nrel.gov/pv/cell-efficiency.html Accessed: 2021/04/15.
    16 B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, and A. Polman, ACS Energy Letters 5 (9), 3029 (2020).
    17 Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Journal of the American Chemical Society 136 (33), 11610 (2014).
    18 A. Dmitriev and A. Oruzheinikov, Journal of Applied Physics 86 (6), 3241 (1999).
    19 N. G. Nilsson, Physica Scripta 8 (4), 165 (1973).
    20 X. Zhao, J. D. A. Ng, R. H. Friend, and Z.-K. Tan, ACS Photonics 5 (10), 3866 (2018).
    21 D. H. Arias, D. T. Moore, J. van de Lagemaat, and J. C. Johnson, The Journal of Physical Chemistry Letters 9 (19), 5710 (2018).
    22 X. Chen, H. Lu, Z. Li, Y. Zhai, P. F. Ndione, J. J. Berry, K. Zhu, Y. Yang, and M. C. Beard, ACS Energy Letters 3 (9), 2273 (2018).
    23 J. He, A. S. Vasenko, R. Long, and O. V. Prezhdo, The Journal of Physical Chemistry Letters 9 (8), 1872 (2018).
    24 R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Advanced Functional Materials 25 (39), 6218 (2015).
    25 B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nature Communications 9 (1), 1 (2018).
    26 Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Y. Zhu, and S. Jin, Nano Letters 16 (2), 1000 (2016).
    27 S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, Proceedings of the National Academy of Sciences 113 (8), 1993 (2016).
    28 B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, Advanced Functional Materials 27 (21), 1606750 (2017).
    29 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nature Photonics 8 (7), 506 (2014).
    30 Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong, Advanced Functional Materials 26 (34), 6238 (2016).
    31 C. K. Møller, Nature 182 (4647), 1436 (1958).
    32 E. M. Hutter, G. E. Eperon, S. D. Stranks, and T. J. Savenije, The Journal of Physical Chemistry Letters 6 (15), 3082 (2015).
    33 M. Zhang, Z. Zheng, Q. Fu, Z. Chen, J. He, S. Zhang, L. Yan, Y. Hu, and W. Luo, CrystEngComm 19 (45), 6797 (2017).
    34 Š. Svirskas, S. Balčiūnas, M. Šimėnas, G. Usevičius, M. Kinka, M. Velička, D. Kubicki, M. E. Castillo, A. Karabanov, and V. V. Shvartsman, Journal of Materials Chemistry A 8 (28), 14015 (2020).
    35 J. S. Manser, J. A. Christians, and P. V. Kamat, Chemical Reviews 116 (21), 12956 (2016).
    36 A. K. Jena, A. Kulkarni, and T. Miyasaka, Chemical Reviews 119 (5), 3036 (2019).
    37 T. Sato, S. Takagi, S. Deledda, B. C. Hauback, and S.-i. Orimo, Scientific Reports 6 (1), 1 (2016).
    38 Q. Sun and W.-J. Yin, Journal of the American Chemical Society 139 (42), 14905 (2017).
    39 Z.-P. Huang, B. Ma, H. Wang, N. Li, R.-T. Liu, Z.-Q. Zhang, X.-D. Zhang, J.-H. Zhao, P.-Z. Zheng, and Q. Wang, The Journal of Physical Chemistry Letters 11 (15), 6007 (2020).
    40 C. Lin, L. Liu, J. Xu, F. Fang, K. Jiang, Z. Liu, Y. Wang, F. Chen, and H. Yao, RSC Advances 10 (35), 20745 (2020).
    41 C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, and A. J. Freeman, Crystal Growth & Design 13 (7), 2722 (2013).
    42 S. K. Balakrishnan and P. V. Kamat, Chemistry of Materials 30 (1), 74 (2018).
    43 G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, L. Yu, J. Xu, and Y. Jiang, Small 14 (7), 1702523 (2018).
    44 X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X. W. Sun, Advanced Functional Materials 26 (25), 4595 (2016).
    45 X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, and S. F. Liu, ACS Applied Materials & Interfaces 10 (8), 7145 (2018).
    46 A. Baumann, S. Väth, P. Rieder, M. C. Heiber, K. Tvingstedt, and V. Dyakonov, The Journal of Physical Chemistry Letters 6 (12), 2350 (2015).
    47 G. J. A. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, Advanced Materials 27 (11), 1837 (2015).
    48 J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, Physical Review B 87 (8), 081201 (2013).
    49 L. Burtone, D. Ray, K. Leo, and M. Riede, Journal of Applied Physics 111 (6), 064503 (2012).
    50 H. D. Jin, E. Debroye, M. Keshavarz, I. G. Scheblykin, M. B. J. Roeffaers, J. Hofkens, and J. A. Steele, Materials Horizons 7 (2), 397 (2020).
    51 P. J. Zhao, B. J. Kim, and H. S. Jung, Materials Today Energy 7, 267 (2018).
    52 S.-C. Liu, Z. Li, Y. Yang, X. Wang, Y.-X. Chen, D.-J. Xue, and J.-S. Hu, Journal of the American Chemical Society 141 (45), 18075 (2019).
    53 Z. Zhang, Y. Liu, P. Zhang, and Y. Mao, Organic Electronics 88, 106007 (2021).
    54 J. He, W.-H. Fang, R. Long, and O. V. Prezhdo, Journal of the American Chemical Society 141 (14), 5798 (2019).
    55 R. Brenes, C. Eames, V. Bulović, M. S. Islam, and S. D. Stranks, Advanced Materials 30 (15), 1706208 (2018).
    56 Y. Tian, A. Merdasa, E. Unger, M. Abdellah, K. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, and V. Sundström, The Journal of Physical Chemistry Letters 6 (20), 4171 (2015).
    57 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Letters 15 (6), 3692 (2015).
    58 D. Fröhlich, K. Heidrich, H. Künzel, G. Trendel, and J. Treusch, Journal of Luminescence 18, 385 (1979).
    59 I. P. a. J. Valenta, Luminescence Spectroscopy of Semiconductors. (Oxford Univ Pr., 2012).
    60 D. W. deQuilettes, K. Frohna, D. Emin, T. Kirchartz, V. Bulovic, D. S. Ginger, and S. D. Stranks, Chemical Reviews 119 (20), 11007 (2019).
    61 A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nature Physics 11 (7), 582 (2015).
    62 L. M. Herz, Annual Review of Physical Chemistry 67, 65 (2016).
    63 F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U. W. Paetzold, U. Rau, T. Unold, and T. Kirchartz, Physical Review Applied 6 (4), 044017 (2016).
    64 P. Langevin, Annual Review of Physical Chemistry 28 (433), 122 (1903).
    65 C. E. S. Martin Pope, Physics Department Charles E Swenberg, Electronic Processes in Organic Crystals and Polymers. (Oxford University Press, 1999).
    66 M. Fox, in Optical Properties of Solids (Oxford University, 2010), p. 215.
    67 R. P. Feynman, Physical Review 97 (3), 660 (1955).
    68 D. Meggiolaro, F. Ambrosio, E. Mosconi, A. Mahata, and F. De Angelis, Advanced Energy Materials 10 (13), 1902748 (2020).
    69 K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De Angelis, and X.-Y. Zhu, Science Advances 3 (8), e1701217 (2017).
    70 A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, Nature Communications 7 (1), 1 (2016).
    71 G. Kaur, K. J. Babu, and H. N. Ghosh, The Journal of Physical Chemistry Letters 11 (15), 6206 (2020).
    72 K. T. Munson, E. R. Kennehan, G. S. Doucette, and J. B. Asbury, Chem 4 (12), 2826 (2018).
    73 J. Li, R. R. Gao, F. Gao, J. Lei, H. X. Wang, X. Wu, J. B. Li, H. Liu, X. D. Hua, and S. Z. Liu, Journal of Alloys and Compounds 818, 152903 (2020).
    74 H. Zhang, C. Zhao, S. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Chen, H. Akiyama, and J. Chu, Chemical Engineering Journal 389, 124395 (2020).
    75 Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Physica Status Solidi (a) 183 (1), 41 (2001).
    76 R. L. Chin, M. Pollard, T. Trupke, and Z. Hameiri, Journal of Applied Physics 125 (10), 105703 (2019).
    77 Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, Nature Communications 10 (1), 1 (2019).
    78 H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, Nature Communications 7 (1), 10896 (2016).
    79 H. Shibata, M. Sakai, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, S. Ishizuka, K. K. Kim, and S. Niki, Japanese Journal of Applied Physics 44 (8), 6113 (2005).
    80 M. Motyka, G. Sęk, R. Kudrawiec, P. Sitarek, J. Misiewicz, J. Wojcik, B. Robinson, D. Thompson, and P. Mascher, (American Institute of Physics, 2007).
    81 J. Fouquet and A. Siegman, Applied Physics Letters 46 (3), 280 (1985).
    82 T. Hayakawa, H. Horie, M. Nagai, and Y. Niwata, Applied Physics Letters 62 (2), 190 (1993).
    83 Z. Chen, Z. Li, C. Zhang, X. F. Jiang, D. Chen, Q. Xue, M. Liu, S. Su, H. L. Yip, and Y. Cao, Advanced Materials 30 (38), e1801370 (2018).
    84 Y. Jiang, X. Wang, and A. Pan, Advanced Materials 31 (47), e1806671 (2019).
    85 T. Schmidt, K. Lischka, and W. Zulehner, Phys Rev B Condens Matter 45 (16), 8989 (1992).
    86 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Advanced Materials 26 (10), 1584 (2014).
    87 Z. Guo, J. S. Manser, Y. Wan, P. V. Kamat, and L. Huang, Nature Communications 6 (1), 1 (2015).
    88 T. W. Crothers, R. L. Milot, J. B. Patel, E. S. Parrott, J. Schlipf, P. Müller-Buschbaum, M. B. Johnston, and L. M. Herz, Nano Letters 17 (9), 5782 (2017).
    89 H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, Journal of the American Chemical Society 136 (39), 13818 (2014).
    90 C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, Energy & Environmental Science 7 (7), 2269 (2014).
    91 S. Dastidar, S. Li, S. Y. Smolin, J. B. Baxter, and A. T. Fafarman, ACS Energy Letters 2 (10), 2239 (2017).
    92 F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, and H. J. Snaith, The Journal of Physical Chemistry Letters 5 (8), 1421 (2014).
    93 W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston, and L. M. Herz, Advanced Materials 27 (48), 7938 (2015).
    94 N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, and M. B. Johnston, Energy & Environmental Science 7 (9), 3061 (2014).
    95 Z. Zhang, Z. Chen, L. Yuan, W. Chen, J. Yang, B. Wang, X. Wen, J. Zhang, L. Hu, and J. A. Stride, Advanced Materials 29 (41), 1703214 (2017).
    96 V. D'Innocenzo, G. Grancini, M. J. Alcocer, A. R. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Nature Communications 5 (1), 3586 (2014).
    97 Y.-C. Hsiao, T. Wu, M. Li, Q. Liu, W. Qin, and B. Hu, Journal of Materials Chemistry A 3 (30), 15372 (2015).
    98 C. Sheng, C. Zhang, Y. Zhai, K. Mielczarek, W. Wang, W. Ma, A. Zakhidov, and Z. V. Vardeny, Physical Review Letters 114 (11), 116601 (2015).
    99 A. McAllister, D. Bayerl, and E. Kioupakis, Applied Physics Letters 112 (25), 251108 (2018).
    100 M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, and B. Murali, Advanced Optical Materials 5 (2), 1600704 (2017).
    101 J. Chen, D. J. Morrow, Y. Fu, W. Zheng, Y. Zhao, L. Dang, M. J. Stolt, D. D. Kohler, X. Wang, and K. J. Czech, Journal of the American Chemical Society 139 (38), 13525 (2017).
    102 R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, and M. A. Green, The Journal of Physical Chemistry C 119 (7), 3545 (2015).
    103 C. S. Ponseca Jr, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. r. Pascher, T. Harlang, P. Chabera, T. Pullerits, and A. Stepanov, Journal of the American Chemical Society 136 (14), 5189 (2014).
    104 R. A. Doganov, E. C. O’Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, and T. Taniguchi, Nature Communications 6 (1), 1 (2015).
    105 M. Karakus, S. A. Jensen, F. D’Angelo, D. Turchinovich, M. Bonn, and E. Canovas, The Journal of Physical Chemistry Letters 6 (24), 4991 (2015).
    106 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy & Environmental Science 7 (3), 982 (2014).
    107 X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, Advanced Functional Materials 24 (46), 7373 (2014).
    108 J. M. Li, X. Yuan, P. T. Jing, J. Li, M. B. Wei, J. Hua, J. L. Zhao, and L. H. Tian, RSC Advances 6 (82), 78311 (2016).
    109 C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, The Journal of Physical Chemistry Letters 5 (8), 1300 (2014).
    110 X.-Y. Zhu and V. Podzorov, (ACS Publications, 2015).
    111 C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. l. Vanmaekelbergh, and A. Y. Silov, ACS Nano 11 (11), 11024 (2017).
    112 P. Guo, Y. Xia, J. Gong, C. C. Stoumpos, K. M. McCall, G. C. B. Alexander, Z. Ma, H. Zhou, D. J. Gosztola, J. B. Ketterson, M. G. Kanatzidis, T. Xu, M. K. Y. Chan, and R. D. Schaller, ACS Energy Letters 2 (10), 2463 (2017).
    113 T. Kirchartz, J. A. Marquez, M. Stolterfoht, and T. Unold, Advanced Energy Materials 10 (26), 1904134 (2020).
    114 F. Fries and S. Reineke, Scientific Reports 9 (1), 1 (2019).

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE