| 研究生: |
陳隆 Chen, Lung |
|---|---|
| 論文名稱: |
In-Situ熱分析和掃描式熱探針微影技術對光電高分子薄膜之研究 In-Situ Thermal Analysis and Scanning Thermal Microscopy of Optoelectronic Polymer Thin Films |
| 指導教授: |
郭昌恕
Cuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 奈米熱分析,定點熱分析,熱探針顯微技術,光電有機材料,P3HT/PCBM,高分子薄膜 |
| 外文關鍵詞: | P3HT/PCBM, optoelectronic organic materials, scanning thermal microscopy, In-situ thermal analysis, Nano-thermal analysis, polymer thin films |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以奈米級熱分析探討光電高分子薄膜的熱性質。此研究,藉由結合掃描探針顯微技術和熱探針的技術,對薄膜材料表面進行in-situ熱分析和掃描式熱顯微分析。
在有機光電太陽能電池的研究中,以P3HT[Poly(3- hexylthiophene)]和PCBM[[6,6]-phenyl-C61-butyric acid methyl ester]構成的異質接面結構主動層是現今較常被研究及看好的組合。此主動層以旋轉塗佈的方式將P3HT/PCBM的溶液塗佈於ITO玻璃基板上,薄膜的厚度範圍為30至900 nm。研究中顯示薄膜厚度會影響薄膜的熱膨脹係數和熔點。此外,在掃描式熱探針顯微實驗中,藉由改變不同的掃描溫度以及試片表面熱傳導性的顯影,可顯示出熱傳導的波動變化並得知試片表面在何時產生相轉變(或相分離)。
在純P3HT和P3HT/PCBM的試片中,熱傳導性的差分別在80oC 和120oC有最明顯的變化訊號。在80oC的訊號是表示純P3HT的玻璃轉換溫度,而120oC的訊號指出P3HT/PCBM薄膜正經歷相轉變和形態重排,文獻指出,此溫度為最適合P3HT/PCBM機太陽能電池的退火溫度。
Nano-scaled thermal analysis of optoelectronic polymer thin films was investigated in this research work. A scanning probe microscopy (SPM) integrated with a scanning thermal probe was employed to perform the in-situ thermal analysis and the scanning thermal microscope (SThM) on the surface of thin film materials.
Poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), commonly used in bulk heterojunction photovoltaics, were spin-coated on silicon wafers or ITO-coated glass substrates with film thickness ranged from 30 to 900 nm. Thermal expansion profiles indicated the thermal expansion coefficients and the melting temperatures of P3HT/PCBM samples were both affected by film thicknesses. A series of SThM with various scanning temperatures was conducted for the 2D mapping of surface thermal conductivities. Fluctuations of these thermal conductivities revealed the thermal transitions and/or the phase separations near the material surfaces. Thermal conductivity differentials were maximized at the mapping temperatures of about 80oC and 120oC for pure P3HT and P3HT/PCBM samples, respectively. The first one represented the 80oC glass transition temperature of P3HT, which was usually undetectable in the conventional differential scanning calorimetry. And, the 120oC temperature recognized the optimized thermal annealing of P3HT/PCBM blends, where the phase separation and morphological rearrangement of P3HT and PCBM domains altered the distribution of surface thermal conductivities.
1. Sharp, J. H., Nomenclature in thermal-analysis-reply. Thermochimica Acta 1986, 104, 395-396.
2. Williams, C. C.; Wickramasinghe, H. K., Scanning thermal profiler. Applied Physics Letters 1986, 49, (23), 1587-1589.
3. Majumdar, A.; Carrejo, J. P.; Lai, J., Thermal imagine using the atomic force microscop. Applied Physics Letters 1993, 62, (20), 2501-2503.
4. Hammiche, A.; Hourston, D. J.; Pollock, H. M.; Reading, M.; Song, M., Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry. Journal of Vacuum Science & Technology B 1996, 14, (2), 1486-1491.
5. Hammiche, A.; Pollock, H. M.; Song, M.; Hourston, D. J., Sub-surface imaging by scanning thermal microscopy. Measurement Science & Technology 1996, 7, (2), 142-150.
6. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J., Localized thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments 1996, 67, (12), 4268-4274.
7. William, P. K.; Thomas, W. K.; Kenneth, E. G.; Graham, C.; Michel, D.; Urs, D.; Hugo, R.; Gerd, K. B.; Peter, V., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Applied Physics Letters 2001, 78, (9), 1300-1302.
8. J. YeM. , R., N. Gotzen, and G. Van Assche, Scanning Thermal Probe Microscopy Nano Thermal Analysis with Raman Microscopy. NANOTHERMAL ANALYSIS March,2007, S5.
9. Moon, I.; Androsch, R.; Chen, W.; Wunderlich, B., The principles of micro-thermal analysis and its application to the study of macromolecules. Journal of Thermal Analysis and Calorimetry 2000, 59, (1-2), 187-203.
10. Kolzer, J.; Oesterschulze, E.; Deboy, G. In Thermal imaging and measurement techniques for electronic materials and devices, 1996; Elsevier Science Bv: 1996; pp 251-270.
11. Altet, J.; Claeys, W.; Dilhaire, S.; Rubio, A., Dynamic surface temperature measurements in ICs. Proceedings of the Ieee 2006, 94, (8), 1519-1533.
12. Cutolo, A., Selected contactless optoelectronic measurements for electronic applications (invited). Review of Scientific Instruments 1998, 69, (2), 337-360.
13. Csendes, A.; Szekely, V.; Rencz, M., Thermal mapping with liquid crystal method. Microelectronic Engineering 1996, 31, (1-4), 281-290.
14. Tessier, G.; Hole, S.; Fournier, D., Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths. Applied Physics Letters 2001, 78, (16), 2267-2269.
15. Christofferson, J.; Shakouri, A., Thermoreflectance based thermal microscope. Review of Scientific Instruments 2005, 76, (2).
16. Song, M.; Hourston, D. J.; Grandy, D. B.; Reading, M., An application of micro-thermal analysis to polymer blends. Journal of Applied Polymer Science 2001, 81, (9), 2136-2141.
17. Boroumand, F. A.; Hammiche, A.; Hill, G.; Lidzey, D. G., Characterizing Joule heating in polymer light-emitting diodes using a scanning thermal microscope. Advanced Materials 2004, 16, (3), 252.
18. Ye, J.; Kojima, N.; Furuya, K.; Munakata, F.; Okada, A., Micro-thermal analysis of thermal conductance distribution in advanced silicon nitrides. Journal of Thermal Analysis and Calorimetry 2002, 69, (3), 1031-1036.
19. Botterill, N. W.; Grant, D. M., Novel micro-thermal characterisation of thin film NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004, 378, (1-2), 424-428.
20. Yonemochi, E.; Hoshino, T.; Yoshihashi, Y.; Terada, K., Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA. Thermochimica Acta 2005, 432, (1), 70-75.
21. Wouters, D.; Schubert, U. S., Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices. Angewandte Chemie-International Edition 2004, 43, 2480-2495.
22. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters 1990, 56, (20), 2001-2003.
23. Avouris, P.; Hertel, T.; Martel, R., Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Applied Physics Letters 1997, 71, (2), 285-287.
24. Hsu, J. H.; Lai, H. W.; Lin, H. N.; Chuang, C. C.; Huang, J. H., Fabrication of nickel oxide nanostructures by atomic force microscope nano-oxidation and wet etching. Journal of Vacuum Science & Technology B 2003, 21, (6), 2599-2601.
25. Xie, X. N.; Chung, H. J.; Bandyopadhyay, D.; Sharma, A.; Sow, C. H.; Wee, A. T. S., Micro/nanoscopic patterning of polymeric materials by atomic force microscope assisted electrohydrodynamic nanolithography. Journal of Applied Physics 2008, 103, (2).
26. Amro, N. A.; Xu, S.; Liu, G. Y., Patterning surfaces using tip-directed displacement and self-assembly. Langmuir 2000, 16, (7), 3006-3009.
27. Liu, M. Z.; Amro, N. A.; Chow, C. S.; Liu, G. Y., Production of nanostructures of DNA on surfaces. Nano Letters 2002, 2, (8), 863-867.
28. Nam, J. M.; Han, S. W.; Lee, K. B.; Liu, X. G.; Ratner, M. A.; Mirkin, C. A., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angewandte Chemie-International Edition 2004, 43, (10), 1246-1249.
29. Zhang, H.; Mirkin, C. A., DPN-generated nanostructures made of gold, silver, and palladium. Chemistry of Materials 2004, 16, (8), 1480-1484.
30. Bullen, D.; Liu, C., Electrostatically actuated dip pen nanolithography probe arrays. Sensors and Actuators a-Physical 2006, 125, (2), 504-511.
31. Dryakhlushin, V. F.; Klimov, A. Y.; Rogov, V. V.; Shashkin, V. I.; Sukhodoev, L. V.; Volgunov, D. G.; Vostokov, N. V., Development of contact scanning probe lithography methods for the fabrication of lateral nano-dimensional elements. Nanotechnology 2000, 11, (3), 188-191.
32. C. J. Brabec, V. D., J. Parisi, and N. S. Sariciftci Book : Organic Photovoltaics: Concepts and Realization. 2003.
33. C. J. Brabec, N. S. S. J. C. H., Plastic Solar Cells. Advanced Functional Materials 2001, 11, (1), 15-26.
34. Blom, P. W. M.; de Jong, M. J. M.; van Munster, M. G., Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Physical Review B 1997, 55, (2), R656.
35. Peumans, P.; Forrest, S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells. Applied Physics Letters 2001, 79, (1), 126-128.
36. Chen, F. C.; Xu, Q. F.; Yang, Y., Enhanced efficiency of plastic photovoltaic devices by blending with ionic solid electrolytes. Applied Physics Letters 2004, 84, (16), 3181-3183.
37. Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 2004, 15, (9), 1317-1323.
38. Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Advanced Functional Materials 2004, 14, (10), 1005-1011.
39. Liu, J.; Shi, Y. J.; Yang, Y., Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Advanced Functional Materials 2001, 11, (6), 420-424.
40. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003, 13, (1), 85-88.
41. Riedel, I.; Dyakonov, V., Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices. Physica Status Solidi a-Applied Research 2004, 201, (6), 1332-1341.
42. Peumans, P.; Forrest, S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. Applied Physics Letters 2001, 79, (1), 126-128.
43. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron-transfer form a conducting polymer to buckminsterfullerene. Science 1992, 258, (5087), 1474-1476.
44. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001, 78, (6), 841-843.
45. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics 2005, 98, (4).
46. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials 2007, 17, (10), 1636-1644.
47. Maywald, M.; Pylkki, R. J.; Balk, L. J., Imaging of local thermal and electrical -conductivity with scanning force microscopy. Scanning Microscopy 1994, 8, (2), 181-188.
48. Mills, G.; Zhou, H.; Midha, A.; Donaldson, L.; Weaver, J. M. R., Scanning thermal microscopy using batch fabricated thermocouple probes. Applied Physics Letters 1998, 72, (22), 2900-2902.
49. Nakabeppu, O.; Igeta, M.; Hijikata, K., Experimental study on point contact transport phenomena using the atomic force microscope. Microscale Thermophysical Engineering 1997, 1, (3), 201-213.
50. Nonnenmacher, M.; Wickramasinghe, H. K. In Optical-absorption spectroscopy by scanning force microscopy, 6th International Conf on Scanning Tunneling Microscopy ( Stm 91 ), Interlaken, Switzerland, Aug 12-16, 1991; Elsevier Science Bv: Interlaken, Switzerland, 1991; pp 351-354.
51. Nonnenmacher, M.; Wickramasinghe, H. K., Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics Letters 1992, 61, (2), 168-170.
52. Nakabeppu, O.; Chandrachood, M.; Wu, Y.; Lai, J.; Majumdar, A., Scanning thermal imaging microscopy using composite cantilever probes. Applied Physics Letters 1995, 66, (6), 694-696.
53. Majumdar, A., Scanning thermal microscopy. Annual Review of Materials Science 1999, 29, 505-585.
54. Dittmer, J. J.; Lazzaroni, R.; Leclere, P.; Moretti, P.; Granstrom, M.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Bredas, J. L.; Rost, H.; Holmes, A. B., Crystal network formation in organic solar cells. Solar Energy Materials and Solar Cells 2000, 61, (1), 53-61.
55. Feng, W.; Fujii, A.; Lee, S.; Wu, H.; Yoshino, K., Broad spectral sensitization of organic photovoltaic heterojunction device by perylene and C-60. Journal of Applied Physics 2000, 88, (12), 7120-7123.
56. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, (6699), 257-260.
57. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, (6540), 498-500.
58. Halls, J. J. M.; Friend, R. H. In The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction, International Conference on the Science and Technology of Synthetic Metals, Snowbird, Ut, Jul 28-Aug 02, 1996; Elsevier Science Sa Lausanne: Snowbird, Ut, 1996; pp 1307-1308.
59. Peumans, P.; Uchida, S.; Forrest, S. R., Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 2003, 425, (6954), 158-162.
60. Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R., Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters 2005, 86, (6), 063502-3.
61. Zhao, Y.; Yuan, G. X.; Roche, P.; Leclerc, M., A Calorimetric study of the phase-transitions in poly(3-hexylthiophene). Polymer 1995, 36, (11), 2211-2214.
62. Hummelen, J. C.; Knight, B. W.; Lepeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L., Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry 1995, 60, (3), 532-538.
63. Germinario, L. T.; Shang, P. P., Advances in nano thermal analysis of coatings. Journal of Thermal Analysis and Calorimetry 2008, 93, (1), 207-211.
64. Kim, J. Y.; Frisbie, D., Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends. Journal of Physical Chemistry C 2008, 112, (45), 17726-17736.
65. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006, 18, (6), 789.
66. L.T Germinario, P.P Shang, advances in nano thermal analysis of coatings, journal of thermal analysis and calorimetry, 2008, 93, 207-211
67. Jang Yang Kim and C. Daniel Frisbie, Correlation of Phase behavior and charge transport in conjugated polymer/fullerene blend, J. Phys. Chem. C, 2008,122,17726-17736
68. J.A Keddie, K,Dalnoki-Veress, Effect of free surface on the glass transition temoerature of thin polymer films,Physical reviet letters,1996, 77,2002-2005
69. yu. Yampolskii, I.Pinnau,B.D.freeman, book : materials science of membranes for gas and vapor separation,wiley,2005