| 研究生: |
張逸賢 CHANG, YI-HSIEN |
|---|---|
| 論文名稱: |
以多重影像特徵值為基礎之趨勢預測成長法應用於腦迴切割影像分割之研究 The Research of Trend-predicting growing method with Multi Image Feature applied on clipped Gyrus Image Segmentation |
| 指導教授: |
陳立祥
CHEN,LI-HSIANG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 模糊 、腦迴 、黑板系統 、影像分割 、趨勢預測 |
| 外文關鍵詞: | Segment, Fuzzy, Trend-predicting, Gyrus, Blackboard |
| 相關次數: | 點閱:114 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學影像分割是一件頗為複雜的工作,必須結合影像處理、電腦圖學及解剖學等多方面的知識才能加以完成。在本論文中,我們將提出如何利用影像處理的技術,配合專家系統中的黑板架構,將使用者所感興趣區域的輪廓線產生出來,並藉由整合本實驗室另一套3D 立體成像的系統,提供使用者在系統做影像辨識及三維物件結果的展示。
在影像辨識方面,我們將介紹針對腦迴的區域影像所採用的影像處理方法,來幫助我們找出灰質區域正確的輪廓線。希望以灰質輪廓線計算出厚度後,搭配後續建立成3 維物件的操作,正確的輪廓線所產生的資訊才有其參考的價值和意義。影像處理的過程中,使用了全域,區域的門檻法來進行辨識,再搭配多種的影像特徵值作為參考資訊。最後收集影像中確定灰質各個區域的特徵值資訊,並
作趨勢預測,將預測結果利用於區域成長的流程控制。
在黑板架構方面,我們將目前已經完成主體架構的系統,加入操作系統和知識源之間的溝通介面,在進行影像辨識的過程中,能讓醫師可以根據專家知識對系統輸入影像辨識的相關資訊,讓知識源在處理影像辨識時,能有更好的辨識結果。
The segmentation of a medical image is an integrated task. We need to integrate the knowledge of image processing, computer vision and anatomy to complete the task. This thesis describes how to use the techniques of image
processing with a blackboard architecture to generate the contours of the regions of interest. We also integrate another system, 3D Builder, to provide the interface for the users so that we can communicate with our system interactively and view the results of the 3-dimensional reconstruction during the process of recognition.
As far as image processing is concerned, we will describe the segmentation methods for the gray matter of gyrus, for helping us find out the correct regions. We hope use the contours to reconstruct 3D objects and find the thickness of the gray matter area, the information that user operate the gyrus 3D object is meaningful when the gray matter’s contour is correct . On the processing of image recognition, we use the globe
and local threshold method, and use various characteristic value to help segmentation on the algorithm. eventually, for the Trend predicting on region grow, we collect the local characteristic value information of the confirmed gray matter area, and use the predicting result to help use determine the region grow control.
About the blackboard architecture, we add the communication interface between the main system and the knowledge resources in the blackboard system which’s main architecture is already completed. According to professional knowledge, doctors can enter the helpful information into the system in the processes of image recognition.
Then we can gain more correct recognition results with knowledge resources.
[1]: Ting-Wei Yang and Lih-Shyang Chen, “The Display of Medical Signals and
Information and Their Applications“,2007
[2]: Masaharu Kobashi and Linda G. Shapiro, “Knowledge-Based Organ
Identification From CT Images”, Pattern Recognition, Vol. 28, No. 4, pp.
475-491,1995.
[3]: Lih-Shyang Chen, “A Distributed and Interactive Three-Dimensional
Medical Image System”, Computerized Medical Imaging and Graphics, 1994.
[4]: Bernd Jahne, “Digital Image Processing” Fifth revised and extended
Edition, Springer Inc., 2001.
[5]: Po-Yu Ke, “3D Reconstruction of human body system and interactive
medical education game”, 2006.
[6]: Chun-Lung Lin, “An Interactive Image Recognition System Based on a
Blackboard Architecture”, 2001.
[7]: E. Gamma, E. Helm, R. Johnson and J. Vlissides, “Design Patterns –
Elements of Reusable Object-Oriented Software”, Reading, MA:
Addison-Wesley, 1995.
[8]: N. Otsu, "A threshold selection method from gray-level histograms" IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979
[9]: Raghu, P. P. and B. Yegnanarayana , “Segmentation of Gabor filtered
textures using deterministic relaxation”, IEEE Transactions on Image Process.
Vol. 5, pp.1625-1636. 1996
[10]: Dunn, D. and W. Higgins, “Optimal Gabor filters for texture segmentation”IEEE Transactions on Image Process, Vol. 4, pp. 947-964. 1995
[11]: Weldon, T. P., W.E. Higgins, and D. F. Dunn, “Efficient Gabor filter design
for texture segmentation”, Pattern Recognition, Vol. 29, pp. 2005-2015, 1996.
[12]: P. Perona, J. Malik, “Scale-space and edge detection using anisotropic
diffusion“, PAMI 12(7), pp. 629-639, 1990
[13]: J.B.T.M. Roerdink and A. Meijster. “The watershed transform: definitions,
algorithms, and parallelization strategies “ In Fundamenta Informaticae 41 , pp.
187-228 ,2000
[14]: Susanta Mukhopadhyay and Bhabatosh Chanda, “A multiscale
morphological approach to local contrast enhancement “, Signal Processing
Volume 80 , Issue 4 , Pages: 685 - 696 , April 2000
[15]: Introduction to Algorithms (Cormen, Leiserson, Rivest, and Stein) ,MIT
press,2001
[16]: James D. Foley, Andries van Dam , Steven K. Feiner and John F.
Hughes , “ Computer Graphics: Principles and Practice in C (2nd Edition)
(Systems Programming Series) “ , Addison-Wesley, 1996
[17]: Gonzalez, “Digital Image Processing 2/E. “, Prentice Hall , 2002
[18]: A. Kandel and G. Langholz, “Fuzzy control systems. “CRC Press, 1994
[19]: S.Theodoridis, and K. Koutroumbas, “Pattern recognition“, Academic
Press, 2006
[20]: Hines, W. W. and Montgomery, “Probability and Statistics in Engineering
and Management Science”, John Wiley and Sons, New York, 1990
[21]: George Box, Gwilym M. Jenkins and Gregory Reinsel , “Time Series
Analysis: Forecasting & Control (2nd Edition) “, john wiley and sons inc , 2004
[22]: Philip E. Gill and Walter Murray. “Algorithms for the solution of the
nonlinear least-squares problem“. SIAM Journal on Numerical Analysis 15 (5):977–992,1978
[23]: Bozic,S.M. “Digital and Kalman filtering. Butterworth-Heinemann. “,1994
[24]: T.F. Cootes and C.J. Taylor and D.H. Cooper and J. Graham. “Active
shape models - their training and application“. Computer Vision and Image
Understanding (61): 38—59,1995
[25]: IEC 1131 - PROGRAMMABLE CONTROLLERS Part 7 - Fuzzy Control
Programming Committee Draft CD 1.0 (Rel. 19 Jan 97)
[26]: http://en.wikipedia.org/wiki/File:Linear_least_squares2.png
[27]: http://en.wikipedia.org/wiki/File:Kalman_filter_model.png