研究生: |
陳姿伶 Chen, Tzu-ling |
---|---|
論文名稱: |
成核層特性與氧化鋅奈米線成長與結構相互關係之研究 Correlation between seed layer characteristics and the growth and structures of ZnO nanowires |
指導教授: |
丁志明
Ting, Jyh-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 171 |
中文關鍵詞: | 成核層 、化學溶液沉積法 、氧化鋅奈米線 |
外文關鍵詞: | chemical solution method, ZnO nanowires, seed layer |
相關次數: | 點閱:90 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用兩階段方式,以玻璃為基板來成長高順向陣列的氧化鋅奈米線,過程中以旋轉塗佈的方式先沉積氧化鋅奈米晶粒(nanocrystals)作為成長高順向纖鋅礦結構氧化鋅奈米線(ZnO nanowires)的成核層,接著以化學溶液沉積法成長陣列的氧化鋅奈米線。實驗在低溫(90℃)環境下利用化學溶液法,將Zn(NO3)2‧6H2O 和 C6H12N4在特定的實驗參數下產生反應,並過飽和析出在氧化鋅薄膜上。 此研究主要探討以溶膠凝膠法製作不同的氧化鋅成核層對於氧化鋅奈米線成長的影響,觀察所成長的氧化鋅奈米線之直徑、長度和分布密度的變化,以及探討氧化鋅奈米線在氧化鋅薄膜上的成長機制,並綜合討論成核層與氧化鋅奈米線間的相互關係。本實驗也從改變化學溶液的濃度、溫度、成長時間和pH值等,研究如何得到長徑比較高的氧化鋅奈米線。本實驗結果利用原子力顯微鏡(AFM)和掃描式電子顯微鏡(SEM)觀察氧化鋅薄膜和奈米線的表面型態,微結構方面則是藉由低掠角入射X光繞射(XRD)和高解析式電子顯微鏡(TEM)來觀測,並用光子激發光譜儀(PL)來測定其發光性質。經由本研究的結果顯示,當成核層的晶粒大小增加時,其成長的氧化鋅奈米線的平均直徑會跟著增加,而氧化鋅奈米線的分布密度與成核層表面的粗糙度、I(002)百分強度(%)和晶粒大小有關,我們亦觀察到單晶的氧化鋅奈米線是由多晶的氧化鋅成核層直接排列成長而成,且其中含有高分子的水溶液製作的成核層,所成長的氧化鋅奈米線具有較高線密度與較高順向性。本實驗研究出在化學溶液濃度範圍在20mM到30mM之間、溫度90℃下成長3到5小時,可以在固定成核層條件下成長長徑比較高且分布較均勻的氧化鋅奈米線。
A two-step process was developed to grow well-aligned ZnO nanowires on the glass substrate, which induced the pre-deposition of ZnO nanocrystals used as seeds for producing well-aligned, wurtzite ZnO nanowires arrays with spin coating and the arrayed ZnO nanowires. Those were synthesized by low-temperature chemical solution method. Aqueous solution of zinc nitrate hydrate and methenamine were used in this research. Zn(OH)2 would be supersaturated, and ZnO nanocrystals would be precipitated and grown on seed layer. In this research, we study the effect of the different kind of the seed layer synthesized by sol-gel method on the synthesis of aligned ZnO nanowires. Investigations were carried out to probe how the diameter, length, and number density of ZnO nanowires varied and the correlation between quality of ZnO nanowires and the different kinds of seed layers. And we investigated the concentration, temperature, growing time, and pH value of growing bath in order to synthesize the ZnO nanowires with high aspect ratio. We also probed into how the ZnO nanowires grew from ZnO films. Atomic force microscope (AFM) and field-emission scanning electron microscope (FESEM) were used to examine the morphology of the nanowires. The microstructure was investigated by glazing incident X-ray diffraction and high resolution transmission electron microscopy. The property of luminescence was measured by Photoluminescence (PL). The average diameter of nanowires increased with the grain size of the seed layer. The number density of nanowires was related to the roughness, the [0002] preferred orientation, and the grain size of the seed layer. The single crystal ZnO nanowires grew epitaxially from the polycrystalline seed layer directly. In addition, the ZnO nanowires grew on the seed layer fabricated with the precursor with polymer having higher alignment and number density. This study showed that we can get ZnO nanowires with higher aspect ratio and distribution-well diameter in the chemical solution with the concentration ranged from 20mM to 30mM, at temperature about 90℃, and the growing time range from 3hr to 5hr.
1. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
2. Ajayan, P.M., Nanotubes from Carbon. Chem Rev, 1999. 99(7): p. 1787-1800.
3. Huang, M.H., S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(5523): p. 1897.
4. Wan, Q., Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004. 84: p. 3654.
5. Lieber, C.M., Solid State Commun. 1998, 107, 607; b) JT Hu, TW Odom, CM Lieber. Acc. Chem. Res, 1999. 32: p. 435.
6. Dong, L., J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, and M. Coulter, ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters, 2003. 82: p. 1096.
7. Baxter, J.B., A.M. Walker, K. van Ommering, and E.S. Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology, 2006. 17(11): p. S304-S312.
8. Li, S.Y., C.Y. Lee, and T.Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. Journal of Crystal Growth, 2003. 247(3-4): p. 357-362.
9. Wang, Y.C., C. Leu, and M.H. Hon, Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition. Electrochemical and Solid-State Letters, 2002. 5: p. C53.
10. Vayssieres, L., Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 2003. 15(5): p. 464-466.
11. Kim, H.M., Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, and K.S. Chung, High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays. Nano Letters, 2004. 4(6): p. 1059-1062.
12. Law, M., L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells. Nature Materials, 2005. 4(6): p. 455-459.
13. Tian, Z.R., J.A. Voigt, J. Liu, B. McKenzie, and M.J. McDermott, Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc, 2002. 124(44): p. 12954-12955.
14. Boyle, D.S., K. Govender, and P. O’Brien, Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chemical Communications, 2002. 2002(1): p. 80-81.
15. Yang, X., C. Shao, H. Guan, X. Li, and J. Gong, Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorganic Chemistry Communications, 2004. 7(2): p. 176-178.
16. Landolt-Bornstein, N.D., Functional Relationships in Science and Technology, Vol. 22. 1987, Springer-Verlag, Berlin.
17. Chen, Y., D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. Journal of Applied Physics, 1998. 84: p. 3912.
18. Zhang, X.T., Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, and X.G. Kong, Temperature dependence of excitonic luminescence from nanocrystalline ZnO films. Journal of Luminescence, 2002. 99(2): p. 149-154.
19. Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter, 2004. 16(25).
20. Tang, Z.K., G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998. 72: p. 3270.
21. Reynolds, D.C., D.C. Look, and B. Jogai, Optically pumped ultraviolet lasing from ZnO. Solid State Communications, 1996. 99(12): p. 873-875.
22. Bagnall, D.M., Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997. 70: p. 2230.
23. Milosevic, O. and D. Uskokovic, Synthesis of BaTiO 3 and ZnO varistor precursor powders by reaction spray pyrolysis. Materials science & engineering. A, Structural materials: properties, microstructure and processing, 1993. 168(2): p. 249-252.
24. Jung, K.Y., Y. Kang, and S. Park, Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis. Journal of Materials Science Letters, 1997. 16(22): p. 1848-1849.
25. Hu, W.S., Z.G. Liu, R.X. Wu, Y.F. Chen, W. Ji, T. Yu, and D. Feng, Preparation of piezoelectric-coefficient modulated multilayer film ZnO/AlO and its ultrahigh frequency resonance. Applied Physics Letters, 1997. 71: p. 548.
26. Ezhilvalavan, S. and T.R.N. Kutty, Low-voltage varistors based on zinc antimony spinel Zn 7 Sb 2 O 12. Applied Physics Letters, 1996. 68(19): p. 2693-2695.
27. Kohiki, S., M. Nishitani, and T. Wada, Preparation of Conductive and Transparent Thin Films by Argon Ion Beam Sputtering of Zinc Oxide in Atmosphere Containing Hydrogen. Jpn. J. Appl. Phys, 1994. 33: p. 6706-6707.
28. Yamada, A., B. Sang, and M. Konagai, Atomic layer deposition of ZnO transparent conducting oxides. Applied Surface Science, 1997. 112: p. 216-222.
29. Kim, K.J. and Y.R. Park, Large and abrupt optical band gap variation in In-doped ZnO. Applied Physics Letters, 2001. 78: p. 475.
30. Kudo, A., H. Yanagi, H. Hosono, and H. Kawazoe, SrCuO: A p-type conductive oxide with wide band gap. Applied Physics Letters, 1998. 73: p. 220.
31. Kawazoe, H., M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2 . Nature(London), 1997. 389(6654): p. 939-942.
32. Ryu, Y.R., W.J. Kim, and H.W. White, Fabrication of homostructural ZnO pn junctions. Journal of Crystal Growth, 2000. 219(4): p. 419-422.
33. Muller, J. and S. Weisenrieder, ZnO-thin film chemical sensors. Analytical and Bioanalytical Chemistry, 1994. 349(5): p. 380-384.
34. Lin, F.C., Y. Takao, Y. Shimizu, and M. Egashira, Hydrogen-sensing mechanism of zinc oxide varistor gas sensors. Sensors & Actuators: B. Chemical, 1995. 25(1-3): p. 843-850.
35. Weisenrieder, K.S. and J. Muller, Conductivity model for sputtered ZnO-thin film gas sensors. Thin Solid Films, 1997. 300(1-2): p. 30-41.
36. Kl, C. and S.R. Das, Thin Film Solar Cells. 1983, Plenum, New York.
37. Rensmo, H., K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, and M. Muhammed, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B, 1997. 101(14): p. 2598–2601.
38. Zhou, Z., W. Peng, S. Ke, and H. Deng, Tetrapod-shaped ZnO whisker and its composites. Journal of Materials Processing Technology(Netherlands), 1999. 89: p. 415-418.
39. Zhou, Z., H. Deng, J. Yi, and S. Liu, A new method for preparation of zinc oxide whiskers. Materials Research Bulletin, 1999. 34(10-11): p. 1563-1567.
40. Lee, W., M.C. Jeong, and J.M. Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Materialia, 2004. 52(13): p. 3949-3957.
41. Satoh, M., N. Tanaka, Y. Ueda, S. Ohshio, and H. Saitoh, Epitaxial Growth of Zinc Oxide Whiskers by Chemical-Vapor Deposition under Atmospheric Pressure. Jpn. J. Appl. Phys, 1999. 38.
42. 廖泓洲, 國立交通大學材料科學與工程學系碩士論文. 2005.
43. Yang, P., H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials, 2002. 12(5): p. 323.
44. Lyu, S.C., Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, and C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chemical Physics Letters, 2002. 363(1-2): p. 134-138.
45. Wang, Y.W., L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, and C.H. Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties. Journal of Crystal Growth, 2002. 234(1): p. 171-175.
46. Zheng, M.J., L.D. Zhang, G.H. Li, and W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 2002. 363(1-2): p. 123-128.
47. 朱聖凱, 水熱電化學法陽極沈積錳氧化物之電極製備及其特 性分析. 國立成功大學材料科學及工程學系碩士論文, 2004.
48. 江耀誠, 有機無機複合過度金屬磷(砷)酸鹽的水熱合成、晶體結構與性質研究. 國立成功大學材料科學及工程學系碩士論文, 2004.
49. Nalwa, H.S., Encyclopedia of Nanoscience and Nanotechnology. Contact. 650: p. 926-2411.
50. Zhang, H., D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnology, 2004. 15(5): p. 622-626.
51. Zhang, J., L.D. Sun, J.L. Yin, H. Su, C. Liao, and C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater, 2002. 14(10): p. 4172-4177.
52. Zhang, H., D. Yang, Y.J. Ji, X. Ma, J. Xu, and D. Que, Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process. J. Phys. Chem. B, 2004. 108(13): p. 3955-3958.
53. Xie, Q., Z. Dai, J. Liang, L. Xu, W. Yu, and Y. Qian, Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Communications, 2005. 136(5): p. 304-307.
54. Sun, X.M., X. Chen, Z.X. Deng, and Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry & Physics, 2003. 78(1): p. 99-104.
55. Wei, H., Y. Wu, N. Lun, and C. Hu, Hydrothermal synthesis and characterization of ZnO nanorods. Materials Science & Engineering A, 2005. 393(1-2): p. 80-82.
56. Ni, Y.H., X.W. Wei, J.M. Hong, and Y. Ye, Hydrothermal preparation and optical properties of ZnO nanorods. Materials Science and Engineering B, 2005. 121(1): p. 42-47.
57. Wang, Y. and M. Li, Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods. Materials Letters, 2006. 60(2): p. 266-269.
58. Greene, L.E., M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed, 2003. 42(26): p. 3031-3034.
59. Le, H.Q., S.J. Chua, Y.W. Koh, K.P. Loh, Z. Chen, C.V. Thompson, and E.A. Fitzgerald, Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters, 2005. 87: p. 101908.
60. 陳慧英, 黃., 朱秦億, 溶膠凝膠法在薄膜製備上之應用. 化工技術第
七卷第十一期, 1999 年十一月號: p. 152-166.
61. Paul, G.K. and S.K. Sen, Sol–gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films. Materials Letters, 2002. 57(3): p. 742-746.
62. Nunes, P., E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, Effect of different dopant elements on the properties of ZnO thin films. Vacuum, 2002. 64(3-4): p. 281-285.
63. Olvera, M., A. Maldonado, R. Asomoza, M. Konagai, and M. Asomoza, Growth of textured ZnO: In thin films by chemical spray deposition. Thin Solid Films, 1993. 229(2): p. 196-200.
64. Li, H., J. Wang, H. Liu, C. Yang, H. Xu, X. Li, and H. Cui, Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum, 2004. 77(1): p. 57-62.
65. 黃政儒, Transparent Conducting ZnO:B Thin Films Deposited by sol-gel method. 義守大學材料科學與工程學系碩士論文, 2005.
66. Govender, K., D.S. Boyle, P.B. Kenway, and P. O'Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004. 14(16): p. 2575-2591.
67. Yamabi, S. and H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry, 2002. 12(12): p. 3773-3778.
68. Matijevic, E., Monodispersed metal (hydrous) oxides-a fascinating field of colloid science. Accounts of Chemical Research, 1981. 14(1): p. 22-29.
69. Matijevic, E., Preparation and properties of uniform size colloids. Chemistry of Materials, 1993. 5(4): p. 412-426.
70. Li, W., E.W. Shi, W.Z. Zhong, and Z.W. Yin, Growth mechanism and growth habit of oxide crystals. Journal of Crystal Growth, 1999. 203(1): p. 186-196.
71. Abe, M. and Y. Tamaura, Ferrite-plating in aqueous solution: A new method for preparing magnetic thin film. Jpn. J. Appl. Phys, 1983. 22: p. 511–513.
72. Yamabi, S. and H. Imai, Fabrication of Rutile TiO 2 Foils with High Specific Surface Area via Heterogeneous Nucleation in Aqueous Solutions. Chemistry Letters, 2001. 30(3): p. 220-221.
73. Tsukuma, K., T. Akiyama, and H. Imai, Liquid phase deposition film of tin oxide. Journal of Non-Crystalline Solids, 1997. 210(1): p. 48-54.
74. Vayssieres, L., K. Keis, A. Hagfeldt, and S.E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 2001. 13(12): p. 4395-4398.
75. Bai, W., K. Yu, Q. Zhang, F. Xu, D. Peng, and Z. Zhu, Large-scale synthesis of ZnO flower-like and brush pen-like nanostructures by a hydrothermal decomposition route. Materials Letters, 2007. 61(16): p. 3469-3472.
76. Kim, Y.J., C.H. Lee, Y.J. Hong, G.C. Yi, S.S. Kim, and H. Cheong, Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Applied Physics Letters, 2006. 89: p. 163128.
77. Kwok, W.M., A.B. Djuri?i, Y.H. Leung, D. Li, K.H. Tam, D.L. Phillips, and W.K. Chan, Influence of annealing on stimulated emission in ZnO nanorods. Applied Physics Letters, 2006. 89: p. 183112.
78. Jiang, L., G. Li, Q. Ji, and H. Peng, Morphological control of flower-like ZnO nanostructures. Materials Letters, 2007. 61(10): p. 1964-1967.
79. Han, X., G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J.G. Hou, Ultraviolet lasing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays. Applied Physics Letters, 2005. 86: p. 223106.
80. Pradhan, B., S.K. Batabyal, and A.J. Pal, Rectifying junction in a single ZnO vertical nanowire. Applied Physics Letters, 2006. 89: p. 233109.
81. Kang, B.S., S.J. Pearton, and F. Ren, Low temperature (< 100° C) patterned growth of ZnO nanorod arrays on Si. Applied Physics Letters, 2007. 90: p. 083104.
82. Hirano, S., N. Takeuchi, S. Shimada, K. Masuya, K. Ibe, H. Tsunakawa, and M. Kuwabara, Room-temperature nanowire ultraviolet lasers: An aqueous pathway for zinc oxide nanowires with low defect density. Journal of Applied Physics, 2005. 98: p. 094305.
83. Li, Q., V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater, 2005. 17(5): p. 1001-1006.
84. Cross, R.B.M., M.M. De Souza, and E.M.S. Narayanan, A low temperature combination method for the production of ZnO nanowires. Nanotechnology, 2005. 16(10): p. 2188-2192.
85. Tak, Y. and K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B, 2005. 109(41): p. 19263-9.
86. Chen, Z. and L. Gao, A facile route to ZnO nanorod arrays using wet chemical method. Journal of Crystal Growth, 2006. 293(2): p. 522-527.
87. Ma, T., M. Guo, M. Zhang, Y. Zhang, and X. Wang, Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology, 2007. 18(035605): p. 035605.
88. 汪建民, 材料分析. 中國材料科學學會, 1998.
89. 鄭信民、林麗娟, 工業材料, 2002. 181.
90. Kajikawa, Y., S. Noda, and H. Komiyama, Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films. Chemical Vapor Deposition, 2002. 8(3): p. 99-104.
91. Ye, J., S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, and Y. Zheng, The growth and annealing of single crystalline ZnO films by low-pressure MOCVD. Journal of Crystal Growth, 2002. 243(1): p. 151-156.
92. Amaral, A., P. Brogueira, C. Nunes de Carvalho, and G. Lavareda, Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation. Surface & Coatings Technology, 2000. 125(1-3): p. 151-156.
93. Wang, H., S. Baek, J. Song, J. Lee, and S. Lim, Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology, 2008. 19(075607): p. 075607.
94. Vanheusden, K., W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996. 79: p. 7983.
95. Li, D., Y.H. Leung, A.B. Djuri?i, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, and W.K. Chan, Different origins of vis