| 研究生: |
吳秉倫 Wu, Ping-Lun |
|---|---|
| 論文名稱: |
量子侷限效應於銫鉛溴化物鈣鈦礦量子點放光及單光子發射特性之影響 Phenomenon of Carrier Recombination and Single Photon Emitting Characteristics by Quantum Confinement Effect in Cesium Lead Bromide Quantum Dots |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 溴化銫鉛鈣鈦礦 、量子點 、量子侷限效應 、激子束縛能 、單光子發射器 |
| 外文關鍵詞: | CsPbBr3, perovskite, quantum dots, quantum confinement effect, exciton binding energy, single photon emitter |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體量子點的尺寸介於數奈米之間,擁有不同於塊材的物理特性,吸收和放光能量因為特殊的能帶結構和被限制的激子而改變,這種效應使我們可以視需求調整材料的放光。銫鉛溴化物鈣鈦礦量子點在近年受到相當的關注,因為具有可調控的放光波長、高放光效率及窄放光線寬等優異的光學特性,使其能夠被應用於太陽能電池、
發光二極體和雷射等光電元件。
在本篇論文中,我們使用溶液法製做出銫溴鉛鈣鈦礦量子點,並透過調整製程溫度控制產出的量子點的尺寸,成長出尺寸介於 9 nm 至 13 nm 的量子點。首先,在穩態光致發光光譜中觀察到放光波長隨量子點尺寸縮小而逐漸藍移。透過不同激發光強度的光致發光光譜量測,我們知道量子點的放光由激子複合機致主導。接著為了探討
量子侷限效應對激子行為的影響,我們在不同溫度下進行光致發光量測,觀察在低溫下沒有熱能影響時的放光行為,並使用阿瑞尼斯方程式擬和實驗結果得到不同大小的量子點的激子束縛能。
最後我們對不同大小的量子點進行光子相干性量測,探討量子侷限效應的強度對時間為 0 時的二階相干函數(g(2)(0))數值的影響,根據先前實驗的結果,量子點的放光波長越短表示其量子侷限效應越強。統整量子點放光波長對 g(2)(0)的關係,發現量子侷限效應越強的量子點能產生越低的 g(2)(0)。
Semiconductor quantum dots (QDs) with particle sizes in the nanometer range have distinct physical properties between bulk materials. The absorption and emission energies have been shifted due to the unique band structures and confined excitons. This effect gives us a probability to adjust the luminescence as needed. In recent years, cesium lead halide perovskite QDs have been attracted wide attention for their outstanding optical properties such as tunable emission wavelength, high luminescence efficiency and narrow emission linewidth, being one of promising materials for solar cell, LED, and laser.
In this work, CsPbBr3 QDs were synthesized through the solution method. The QDs with diameter ranging from 9 nm to 13 nm were produced by controlling process temperature.
First, the steady-state photoluminescence (PL) results show that a blue shift of the emission position was observed with the decrease in QDs sizes. The origin of the carrier recombination was found to be excitonic recombination by analyzing the excitation powerdependent PL measurement. The exciton binding energies with different particle sizes were calculated using Arrhenius equation.
Finally, we performed HBT experiment on diluted various QDs’ sizes to study the relation between the strength of quantum confinement effect and the value of the second order correlation function at t = 0 (g(2)(0)). According to pervious result of our study, higher emission energy represents stronger quantum confinement. The relationship between the emission wavelength and the value of g (2)(0) was unified, gave a lower g(2)(0)in the QD with stronger confinement.
1 P. Guyot-Sionnest, Comptes Rendus Physique 9 (8), 777 (2008).
2 L. Sinatra, J. Pan, and O.M. Bakr, Material Matters 12, 3 (2017).
3 B.X. Zhao, X.L. Zhang, X. Bai, H.C. Yang, S. Li, J.J. Hao, H.C. Liu, R. Lu, B. Xu,
L.D. Wang, K. Wang, and X.W. Sun, Science China-Materials 62 (10), 1463 (2019).
4 Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho,
and H.-C. Kuo, Light: Science & Applications 9 (1), 1 (2020).
5 Z. Pan, I.n. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and
J. Bisquert, Journal of the American Chemical Society 136 (25), 9203 (2014).
6 J.S. Yao, J.C. Zhang, L. Wang, K.H. Wang, X.C. Ru, J.N. Yang, J.J. Wang, X. Chen,
Y.H. Song, Y.C. Yin, Y.F. Lan, Q. Zhang, and H.B. Yao, Journal of Physical
Chemistry Letters 11 (21), 9371 (2020).
7 D. Huber, M. Reindl, Y. Huo, H. Huang, J.S. Wildmann, O.G. Schmidt, A. Rastelli,
and R. Trotta, Nature communications 8 (1), 1 (2017).
8 S. Hepp, M. Jetter, S.L. Portalupi, and P. Michler, Advanced Quantum
Technologies 2 (9) (2019).
9 C. Jennings, X.Y. Ma, T. Wickramasinghe, M. Doty, M. Scheibner, E. Stinaff, and M.
Ware, Advanced Quantum Technologies 3 (2) (2020).
10 M. Fox, Optical Properties of Solids. (Oxford University Press, 2010).
11 T.-Y. Kim, N.-M. Park, K.-H. Kim, G.Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi,
Applied Physics Letters 85 (22), 5355 (2004).
12 F. Gao, Applied Physics Letters 98 (19), 193105 (2011).
13 Q. Li and T. Lian, Nano Lett. 17 (5), 3152 (2017).
14 L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X.
Yang, A. Walsh, and M.V. Kovalenko, Nano Lett. 15 (6), 3692 (2015).
15 X. Wang, Z. Bao, Y.-C. Chang, and R.-S. Liu, ACS Energy Letters 5 (11), 3374
(2020).
16 G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, and M.V.
Kovalenko, Nano Lett. 15 (8), 5635 (2015).
17 T. Jemsson, H. Machhadani, P.O. Holtz, and K.F. Karlsson, Nanotechnology 26 (6)
(2015).
18 S. Pierini, M. D'Amato, M. Goyal, Q. Glorieux, E. Giacobino, E. Lhuillier, C.
Couteau, and A. Bramati, ACS Photonics 7 (8), 2265 (2020).
19 Q. Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H.
Zhou, and Y. Yang, Nano Today 10 (3), 355 (2015).
20 T. Oku, Reviews on Advanced Materials Science 59 (1), 264 (2020).
21 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the american
chemical society 131 (17), 6050 (2009).
22 National Renewable Energy Laboratory, (Colorado, 2022).
23 B. Ehrler, E. Alarcon-Llado, S.W. Tabernig, T. Veeken, E.C. Garnett, and A. Polman,
(ACS Publications, 2020).
24 Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price,
A. Sadhanala, L.M. Pazos, and D. Credgington, Nature nanotechnology 9 (9), 687
(2014).
25 B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J.M. Richter, L. Yang,
L. Dai, and M. Alsari, Nature Photonics 12 (12), 783 (2018).
26 Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N. Myoung, C.L. Lee, S.H. Im, and T.W. Lee,
Advanced materials 27 (7), 1248 (2015).
27 E.R. Dohner, A. Jaffe, L.R. Bradshaw, and H.I. Karunadasa, Journal of the
American Chemical Society 136 (38), 13154 (2014).
28 B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nature
communications 9 (1), 1 (2018).
29 Z. Liu, J. Chen, C. Huang, T.G. Kiprono, W. Zhao, W. Qiu, Z. Peng, and J. Chen,
Nano 15 (12), 2050161 (2020).
30 N. Kirstaedter, N. Ledentsov, M. Grundmann, D. Bimberg, V. Ustinov, S. Ruvimov,
M. Maximov, P.S. Kop'ev, Z.I. Alferov, and U. Richter, Electronics Letters 30 (17),
1416 (1994).
31 P. Walter, E. Welcomme, P. Hallégot, N.J. Zaluzec, C. Deeb, J. Castaing, P. Veyssière,
R. Bréniaux, J.-L. Lévêque, and G. Tsoucaris, Nano Lett. 6 (10), 2215 (2006).
32 A. Ekimov and A. Onushchenko, Jetp Letters 34, 345 (1981).
33 A.L. Efros and A.L. Efros, Sov. Phys. Semicond 16 (7), 772 (1982).
34 C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, and A. Ekimov,
Physical Review B 57 (8), 4664 (1998).
35 C. Murray, D.J. Norris, and M.G. Bawendi, Journal of the American Chemical
Society 115 (19), 8706 (1993).
36 X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, Advanced Functional
Materials 26 (15), 2435 (2016).
37 J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Advanced materials 27 (44),
7162 (2015).
38 P. Wang, X. Bai, C. Sun, X. Zhang, T. Zhang, and Y. Zhang, Applied Physics
Letters 109 (6), 063106 (2016).
39 G. Raino, G. Nedelcu, L. Protesescu, M.I. Bodnarchuk, M.V. Kovalenko, R.F. Mahrt,
and T. Stoferle, ACS Nano 10 (2), 2485 (2016).
40 Y.S. Park, S.J. Guo, N.S. Makarov, and V.I. Klimov, ACS Nano 9 (10), 10386
(2015).
41 D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, and X. Tang,
Small 15 (23), 1901173 (2019).
42 Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos,
A.F. Nogueira, and E.H. Sargent, ACS applied materials & interfaces 7 (45), 25007
(2015).
43 J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali, S.P. Sarmah, M. Yuan, L. Sinatra,
N.M. Alyami, and J. Liu, Advanced Materials 28 (39), 8718 (2016).
44 D. Fröhlich, K. Heidrich, H. Künzel, G. Trendel, and J. Treusch, Journal of
Luminescence 18, 385 (1979).
45 Y. Li, T. Ding, X. Luo, Z. Chen, X. Liu, X. Lu, and K. Wu, Nano Research 12 (3),
619 (2019).
46 K.S. Krane, Modern physics. (John Wiley and Sons, Inc., 2012).
47 L. Jia-Ming, Photonic devices. (Cambridge University, 2005).
48 K. Min, P.S. Win, H.M. Tun, Z.M. Naing, and W.K. Moe, Materials Science (2018).
49 A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J.
Snaith, and R.J. Nicholas, Nature Physics 11 (7), 582 (2015).
50 Z. Jiang, Z. Liu, Y. Li, and W. Duan, Phys. Rev. Lett. 118 (26), 266401 (2017).
51 Z. Chen, C. Yu, K. Shum, J.J. Wang, W. Pfenninger, N. Vockic, J. Midgley, and J.T.
Kenney, Journal of Luminescence 132 (2), 345 (2012).
52 A.M. Fox and M. Fox, Quantum optics: an introduction. (Oxford university press,
2006).
53 C. Foellmi, Astronomy & Astrophysics 507 (3), 1719 (2009).
54 A. Jain, O. Voznyy, S. Hoogland, M. Korkusinski, P. Hawrylak, and E.H. Sargent,
Nano Lett. 16 (10), 6491 (2016).
55 Y. Li, X. Luo, T. Ding, X. Lu, and K. Wu, Angewandte Chemie 132 (34), 14398
(2020).
56 Q.Y. Li, Y.W. Yang, W.X. Que, and T.Q. Lian, Nano Lett. 19 (8), 5620 (2019).
57 M. Dyakonov and V.Y. Kachorovskii, Physical Review B 49 (24), 17130 (1994).
58 M. Koolyk, D. Amgar, S. Aharon, and L. Etgar, Nanoscale 8 (12), 6403 (2016).
59 A.S. Vorokh, Nanosystems-Physics Chemistry Mathematics 9 (3), 364 (2018).
60 W. Chi and S.K. Banerjee, Chemical Engineering Journal 426, 131588 (2021).
61 C. Spindler, T. Galvani, L. Wirtz, G. Rey, and S. Siebentritt, Journal of Applied
Physics 126 (17), 175703 (2019).
62 H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang,
Nature communications 7 (1), 1 (2016).
63 M. Motyka, G. Sęk, R. Kudrawiec, P. Sitarek, J. Misiewicz, J. Wojcik, B. Robinson,
D. Thompson, and P. Mascher, (2007).
64 S.M. Lee, C.J. Moon, H. Lim, Y. Lee, M.Y. Choi, and J. Bang, Journal of Physical
Chemistry C 121 (46), 26054 (2017).
65 A. Boziki, M.I. Dar, G. Jacopin, M. Gratzel, and U. Rothlisberger, Journal of
Physical Chemistry Letters 12 (10), 2699 (2021).
66 Q. Wang, W. Wu, R. Wu, S. Yang, Y. Wang, J. Wang, Z. Chai, and Q. Han, Journal
of colloid and interface science 554, 133 (2019).
67 A. Shinde, R. Gahlaut, and S. Mahamuni, Journal of Physical Chemistry C 121
(27), 14872 (2017).
68 M. Knupfer, Applied Physics A 77 (5), 623 (2003).
69 Y. Yuan, M. Chen, S. Yang, X. Shen, Y. Liu, and D. Cao, Journal of Luminescence
226, 117471 (2020).
70 B. Ai, C. Liu, Z. Deng, J. Wang, J.J. Han, and X.J. Zhao, Physical Chemistry
Chemical Physics 19 (26), 17349 (2017).
71 Q.J. Han, W.Z. Wu, W.L. Liu, Q.X. Yang, and Y.Q. Yang, Journal of Luminescence
198, 350 (2018).
72 J. Cao, C. Yan, C. Luo, W. Li, X. Zeng, Z. Xu, X. Fu, Q. Wang, X. Chu, and H. Huang,
Advanced Optical Materials 9 (17), 2100300 (2021).
73 L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Y. Fan, N. Zhang, and X. Liu, Nanoscale 10
(38), 18315 (2018).
74 Y. Liu, J. Wang, L. Zhang, W. Liu, C.C. Wu, C.Y. Liu, Z.X. Wu, L.X. Xiao, Z.J. Chen,
and S.F. Wang, Optics Express 27 (20), 29123 (2019).
75 H.M. Jang, J. Park, S. Kim, and T.-W. Lee, Journal of Physics: Condensed Matter
33 (35), 355702 (2021).
76 Z. Zhao, M. Zhong, W. Zhou, Y. Peng, Y. Yin, D. Tang, and B. Zou, The Journal of
Physical Chemistry C 123 (41), 25349 (2019).
77 M.J. Holmes, M. Arita, and Y. Arakawa, Semiconductor Science and Technology
34 (3) (2019).
78 X. Lin, X. Dai, C. Pu, Y. Deng, Y. Niu, L. Tong, W. Fang, Y. Jin, and X. Peng,
Nature Communications 8 (1), 1 (2017).
79 C. Negele, J. Haase, A. Budweg, A. Leitenstorfer, and S. Mecking,
Macromolecular rapid communications 34 (14), 1145 (2013).
80 X. Han, G.F. Zhang, B. Li, C.G. Yang, W.L. Guo, X.Q. Bai, P. Huang, R.Y. Chen,
C.B. Qin, J.Y. Hu, Y.F. Ma, H.Z. Zhong, L.T. Xiao, and S.T. Jia, Small 16 (51)
(2020).
81 C.L. Zhu, M. Marczak, L. Feld, S.C. Boehme, C. Bernasconi, A. Moskalenko, I.
Cherniukh, D. Dirin, M.I. Bodnarchuk, M.V. Kovalenko, and G. Raino, Nano Lett.
22 (9), 3751 (2022)