| 研究生: |
蘇宏迪 Su, Hung-Ti |
|---|---|
| 論文名稱: |
濺鍍電漿製程反應器內中性氣體動力行為之DSMC模擬 DSMC Simulation of Neutral Gas Dynamics within a Plasma Sputtering Chamber |
| 指導教授: |
邱政勳
Chiou, Jeng-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 蒙地卡羅法 、電漿 、濺鍍腔體 |
| 外文關鍵詞: | DSMC, Plasma, Sputtering Chamber |
| 相關次數: | 點閱:41 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於半導體工業的迅速發展,電漿製程也愈受關切,故本文中針對一濺鍍電漿製成反應器內分析注入之中性氣體的分佈狀況,以期能對電漿製程有所改進;因為電漿濺鍍腔體之腔內壓力甚低,約在3mtorr左右,流體過渡稀薄而無法以一般連續流的Navier-Stokes方程式來分析;故本文採用直接蒙地卡羅法來求解腔內之密度與溫度之分佈。
文中所模擬之反應腔體腔壓為0.4Pa,直徑為600mm高為480mm,注入之氣體為氬氣注入率分別為5、10、15sccm,而托盤溫度則分別為300K、500K、700K的情況下,去探討反應器內密度與溫度分佈的狀況。
模擬結果顯示,在固定入口流率下,當托盤溫度上升時,將導致腔內核心關鍵區域中的標準差密度不變與標準差溫度上升;而在固定托盤溫度下,當流率上升時,則核心區中的標準差密度上升與標準差溫度不變;因此欲得到更均勻流場,就必須將托盤溫度下降到邊界溫度附近以及限制入口流率使其不致過大。托盤溫度與入口流率雖對流場之均勻度都有影響,但是由模擬結果比較下來,下降入口流率之影響要比下降托盤溫度來得更明顯,所以入口流率實是影響著腔體內區域中均勻度的一個關鍵性變數。
The plasma fabrication process is attracting more attentions as the semiconductor industry is still growing up. In this study , the dynamic behavior of neutral gases within a plasma sputtering chamber (under 3 mtorr pressure) is simulated by the direct simulation Monte Carlo (DSMC) method.
From the simulated results such as the density and temperature distributions within the chamber can hopefully provide the useful information to improve the chamber design.
Argon was considered as the neutral gas to injected into the sputtering chamber under 0.4Pa pressure with the diameter of 600mm and the height of 480mm. Different injection rates varied as 5,10 and 15 sccm under different temperature of the target holder (which are 300K,500Kand 700K) are all simulated and analyzed.
Results indicate that the stardand deviation density (STD_D) inside the block 1 zone (key space inside the chamber) is invariable and the stardand deviation temperature is increasing when the holder temperature is decreasing while the injection is fixed.
And STD_D is increasing and STD_T is invariable when the injection is increasing while the holder temperature is fixed.
In order to get more uniform flux , we compare the influence of the holder temperature and the injection rate. Finally we get the conclusion which is the injection rate have more powerful influence, so it is a key parmameter.
參考文獻
[1] Kilogore, M. D., Wu, H. M., and Graves, D. B., 1994, “NeutralTransport in High Plasma-Density Reactor,” J. Vac. Sci. Technol. B,Vol. 12. No.1, pp.494-506.
[2] 洪昭南,電漿反應器,化工技術,1995。
[3] Bird G. A., “Molecular Gas Dynamics and the Direct Simulation of Gas Flows”, Oxford Univ. Press, New York, 1994.
[4] 蘇嘉南,2000,”以三維蒙地卡羅模擬分析高速微管流場”國立成功大學機械崇學系碩士論文。
[5] E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, “Slipflow in microchannels.”See Harvey&lord, Vol 1, pp. 347-353,1995
[6] Bird, R. B.,Stewart, W. E., and Lightfoot, E. N., 1960,”Transport Phenomena,”pp.76-81, John Wiley & Sons, Inc., New York.
[7] Lieberman, M. A., and Lichtenberg, A. J.,1994,”Principles of Plasma Discharges and Materials Processing,”pp.31-32, John Wiley & Sons, Lin., New York.
[8] Bird, G. A., 1981, “Monte-carlo Simulation in an Engineering Context,”Prog. Astronaut. Aeronaut., Vol. 74,pp.239-255.
[9] Bird, G. A., Molecular Gas Dynamics(Clarendon Press, Oxford, UK, 1976).
[10] Wu, J. S. and Tseng, K. C.,”Analysis of Micro-Scale Gas Flows With Pressure Boundaries Using Direction Simulation Monte Carlo Method,”Computer & Fluids, 30, pp.711-735,2001.
[11]Boyd, I. D., Jafry, Y. and Beukel, J. W., “Particle simulation of helium micro-thruster flows,” J. Spacecraft Rockets Vol. 1, pp.271-281, 1996.
[12]Nanbu, K., 1996,”Stochastic Solution Method of the Blozmann Equation II. Simple Gas, Gas Mixture, Diatomic Gas, Reactive Gas, and Plasma,” Professor, Institue of Fluid Science, Tohoku University.
[13]Wu, J.-S., Tseng, K.-C. and Kuo, C.-H.,”The direct simulation Monte Carlo method using unstructured adaptive mesh and its application,”International Journal of Numerical Method in Fluids, Volume 38, Issue 4, pp.351-375,2002.
[14]J.-S. Wu and Y.-Y. Lian,”Parallel Three-Dimensional Direct Simulation Monte Crlo Method and Its Applications ,”Computers&Fluids Volume 32,Issue 8, Pages 1133-1160, September 2003.
[15]J.-S. Wu, K.-C. Tseng and F.-Y. Wu,”Three-Dimensional Direct Simulation Monte Carlo Method Ueing Mesh Refinement and Variable Time-Step,”AIAA Journal,2003.=
[16]黃兆志,1997,”電漿製程反應器中性饋入氣體之蒙地卡羅模擬”國立清華大學工程與系統科學系碩士論文。
[17]Balakrishnan , Jitendra (Cornell Univ); Boyd, Iain D.; Braun, David G.,”Monte Carlo simulation of vapor transport in physical vapor deposition of titanium”, Journal of Vacuum Science and Technology, A 18 (3), 2000, p 907-916.
[18]Fan, Jing (Univ of Michigan); Boyd, Iain D.; Shelton, Chris ,”Monte Carlo modeling of electron beam physical vapor deposition of yttrium”, Journal of Vacuum Science and Technology, A 18 (6), 2000, p 2937-2945.
[19]H. Mizuseki, Y. Jin, Y. Kawazoe, L.T. Wille,”Cluster Growth Processes by Direct Simulation Monte Carlo Method”,Applied Physics A, 73(2001), 731-735.
[20]D.D. Hass,Y. Marciano, H.N.G. Wadley.,”Physical Vapor Deposition on Cylindrical Substrates”,Surface and Coatings Technology, 185(2004), 283-291.
[21]連又永,2001,”平行化之三維直接蒙地卡羅法的發展及其應用”國立交通大學機械工程研究所碩士論文。
[22]李允明,2003,”稀薄狀況下噴嘴擴張的實驗與模擬計算之研究”國立交通大學機械工程研究所碩士論文。
[23]陳世豪,1998,”電漿製程反應器內中性氣體濃度分佈之電腦模擬分析”國立清華大學工程與系統科學系碩士論文。