簡易檢索 / 詳目顯示

研究生: 韓妮可
Hendrawati, Nanik
論文名稱: 以聚乙烯胺分散ZnO奈米粒子於水溶液系統
Dispersion of ZnO Nano Particles in Aqueous Solutions Using Poly (vinylamine) as the Dispersant
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
外文關鍵詞: Poly (vinylamine), aggregate, surface charge,
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米尺寸之無機材固體如ZnO於水溶液中的懸浮分散性是奈米技術之製程中重要的其中一環,粒子的膠體製程目前已被廣泛地接受並已有許多工業上的應用,例如:塗層、奈米裝置、陶瓷、油漆、顏料以及醫藥。在固態微粒中高分子穩定的機制已在多處文獻中被學者們討論,雖然如此,但僅有少數人對於ZnO奈米粒子之膠體穩定性之研究進行探討。在此研究中,針對ZnO奈米粒子在懸浮水溶液並且隨著pH值的不同而觀察到有不同的沉澱量,實驗中為了得到穩定的ZnO奈米粒子懸浮水溶液,我們選取了PVAm作為分散劑,而高分子的分散效率則是透過沉澱澄清測試以及吸收度還原測量法來得知,接著再以表面電位量測法來說明高分子被吸引到ZnO奈米粒子表面之效率。此外,粒徑分布可以提供我們關於固體微粒分散程度之資訊。從此研究中,我們可以充分地了解到高分子於ZnO奈米粒子水溶液中的分散機制,我們更能清楚地得知影響高分子分散劑效率的主要原因。
    在未添加PVAm的情況之下,ZnO奈米粒子分散於水中後會立即沉澱,這是因為粒子本身沒有挾帶足夠的電荷,導致粒子之間無法互相排斥,所以粒子之間的靜電排斥力無法克服凡得瓦爾力及其他因素,造成粒子與粒子傾向於聚集在一起。藉由PVAm的引入,ZnO奈米懸浮溶液之穩定性才顯著地提升,這可以透過僅有不多的ZnO奈米粒子沉澱來得以證實。另外溶液中由於PVAm的加入,ZnO的電性顛倒並且其表面電位值將變成較高的正電荷值,其中最穩定懸浮的溶液pH值為介於7與11之間,因此我們可以得知高分子沉澱之效率與懸浮水溶液的pH值有密切的關連性。

    Dispersion of inorganic solid such as ZnO at nanoscale in aqueous suspension is one of the important issues in nanotechnological processes. The colloidal processing of particle has received much interest in many applications of industry such as coating, nanodevice, ceramic, paint, pigment, and pharmaceutical. The mechanism of polymeric stabilization on solid particles has been discussed in many publications. However, few researchers focused on colloidal stability of ZnO nanoparticles. In this work, aqueous suspensions of nano-ZnO powder with various pH values and amounts of dispersant are investigated. PVAm was selected as the dispersant for preparing a stable aqueous nano-ZnO suspension. The dispersion efficiency of polymer was studied by sedimentation settling test and reduction of absorbance measurement. The zeta potential measurement was used to elucidate the effect of polymeric addictive onto the surface of ZnO nanoparticles. In addition the surface charge measurement, the particle size distribution can give relatively real picture about dispersion state of solid particle. From this study we can gain better understanding of the dispersion mechanism of polymer to the ZnO nanoparticle. And we also know about the main factors influencing the effectiveness of polymeric dispersant.It was found that in the absence of poly (vinylamine); ZnO nanoparticles disperse in water completely precipitate instantly. Due to the lower zeta potential, the particles do not carry enough charge to repel each other. The electrostatic repulsion between particles is not sufficient to prevent nano-ZnO getting close and stick together because of the nature Van der Waals attraction and more likely to aggregate. By introduction of poly (vinylamine) into suspension, the stability of nano-ZnO increases significantly. It could be evidenced by the lower of ZnO nanopowder precipitation. In the presence of polymer, the surface charge of nano-ZnO shows the charge reversal and the value of zeta potential becomes further higher positive. The effectiveness of polymeric stabilization is closely related to the pH of suspension. It was found that the most stable suspension occurred at pH ranges 7 to 11.

    ABSTRACT I 摘 要 III Acknowledgements IV Contents VI List of Tables VIII List of Figures IX CHAPTER ONE: INTRODUCTION 1 1.1 Motivation 4 CHAPTER TWO: LITERATURE REVIEW 6 2.1 Colloid Stability 6 2.2 Interparticle Force 7 2.3 Modified of DLVO Theory 10 2.4 Dispersion of Nanoparticles 12 2.5 Stability of Metal Oxide Nanoparticles in Aqueous System 15 2.5.1 Dispersion of nano-TiO2 16 2.5.2 Dispersion of Nano-ZnO 18 2.6 Polymeric Stabilization of ZnO Nanoparticles 20 2.6.1 Polymer Conformation 22 CHAPTER THREE: EXPERIMENTAL SECTION 27 3.1 Background on Characterization Techniques 27 3.1.1 Zeta Potential 27 3.1.2 Dynamic Light Scattering 29 3.2 Experimental Procedure 31 3.2.1 Material 31 3.2.2 Apparatus 32 3.2.3 Preparation of Dispersant. 32 3.2.4 Preparation of Suspension 35 3.2.5 Characterization and Measurement 35 CHAPTER FOUR: RESULTS AND DISCUSSION 39 4.1 Properties of Nano-ZnO in Aqueous Solutions 39 4.2. Effect of pH Value and PVAm Concentration on the Stability of Zinc Oxide Nanoparticle 44 4.3 Electrokinetical Behavior of ZnO Nanoparticles in the Presence of Polymer 49 4.4 Effect of PVAm Concentration on the Reduction of Particle Size of ZnO Nanoparticles. 52 4.4 Optimum Concentration of Polymer was evaluated by Sedimentation Settling Test and Absorbance Measurement 58 4.4 Influence of pH Suspension on the Mechanism of Polymeric Stabilization 61 4.5 Polymeric Stabilization at Higher Concentration of Solid Particles 63 CHAPTER FIVE: CONCLUSIONS 68 REFERENCES 70 CURRICULUM VITAE 73

    (1) Klingshirn, C. ChemPhysChem 2007, 8.
    (2) Muthukumar, S.; Sheng, H.; Zhong, J.; Zhang, Z.; Emanetoglu, N.; Lu, Y. IEEE Trans. Nanotechnol. 2003, 2, 50.
    (3) Lowry, M.; Hubble, D.; Wressell, A.; Vratsanos, M.; Pepe, F.; Hegedus, C. J. Coat. Technol. Res. 2008, 5, 233.
    (4) Shengcong, L.; Hanning, X.; Yuping, L. Mater. Lett. 2005, 59, 3494.
    (5) Sedlak, A.; Janusz, W. Physicochemical Problems of Mineral Processing 2008, 42, 57.
    (6) Degen, A.; Kosec, M. J. Am. Ceram. Soc. 2000, 20, 667.
    (7) Kanai ( H. K., JP); Takahashi, Takashi (Tokyo, JP) ;Imai, Motomasa (Inagi, JP); Furukawa, Osamu (Sagamihara, JP) ;Endo, Hiroshi (Yokohama, JP) ;Hirao, Osamu Tokyo, JP) ;Hayashi, Masaru (Yokohama, JP) . In United States Patent 4540971 1985
    (8) Wikipedia. In 21 February 2009, the free encyclopedia.
    (9) Hackley, V. J. Am. Ceram. Soc. 1997, 80, 2315.
    (10) Farrokhpay, S.; Morris, G.; Fornasiero, D.; Self, P. Colloids Surf., A 2005, 253, 183.
    (11) Farrokhpay, S., University of South Australia,2004
    (12) Chen, H.; Ravishankar, S.; Farinato, R. Int. J. Miner. Process. 2003, 72, 75.
    (13) Van den Haak, H. J. Coat. Technol 1997, 69, 137.
    (14) Das, K.; Somasundaran, P. Colloids Surf., A 2001, 182, 25.
    (15) Deiss, J.; Anizan, P.; El Hadigui, S.; Wecker, C. Colloids Surf., A 1996, 106, 59.
    (16) Liufu, S.; Xiao, H.; Li, Y. J. Colloid Interface Sci. 2005, 281, 155.
    (17) Bing, P.; Yi, H.; yuan, C. l.; Liang, L. G.; ming, C. M.; fei, Z. h. X. J.Cent.South Univ.Technol 2007, 4.
    (18) Heijman, S. G. J.; Stein, H. N. Langmuir 1995, 11.
    (19) Xiaonong Chen; Yi Wang; Pelton, R. Langmuir 2005, 21.
    (20) Fahrner, W. R.; Springer Berlin HeidelbergBerlin, 2005.
    (21) Pitkethly, M. J.; Nanotoday: 2003, p 36.
    (22) Brunner, T.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.; Limbach, L.; Bruinink, A.; Stark, W. Environ. Sci. Technol 2006, 40, 4374.
    (23) Sato, T.; Ruch, R. Stabilization of colloidal Dispersion by Polymer Adsorption; Marcel Dekker,INC: New york and Basel, 1980.
    (24) Ott, L.; Finke, R. Coord. Chem. Rev. 2007, 251, 1075.
    (25) Ninham, B. Adv. Colloid Interface Sci. 1999, 83, 1.
    (26) Guazhong Cao Synthesis, Properties and Applications University of Washington Imperial College Press, 2004.
    (27) Spitzer, J. J. Colloid Polym Sci 2003,281
    (28) Shaw, D. J. Introduction to Colloid and Surface Chemistry, ; Butterworths Boston , 1980
    (29) Napper, D. H. Polymeric Stabilization of Colloidal Dispersion; Academic Press: London, 1983.
    (30) Kendallt, K.; WeihsS, T. P. J. Phys. D: Appl. Phys. 1992, 25.
    (31) Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J. C. Water Res. 2008, 42.
    (32) Jiang, J.; A, G. O.; Biswas, P. J. Nanopart. Res. 2009, 11.
    (33) Parish, M. V.; Garcia, R. R.; Bowen, H. K. J. Mater. Sci. 1985, 20.
    (34) Mandzy, N.; Grulke, E.; Druffel, T. Powder Technol. 2005, 160, 121.
    (35) Stuart, M. A. C. Polym. J. 1991, 20.
    (36) Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1979, 83.
    (37) Liufu, S.; Xiao, H.; Li, Y. Powder Technol. 2004, 145.
    (38) Liufu, S. C.; Xiao, H. N.; Li, Y. P. Mater. Lett. 2005, 59, 3494.
    (39) Degen, A.; Kosec, M. J. Am. Ceram. Soc. 2003, 86, 2001.
    (40) Kirby, B.; Hasselbrink Jr., E. Electrophoresis 2004, 25.
    (41) Kecht, V. J., Universität München, 2008.
    (42) C.Hiemenz, P.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Third ed.; Marcel Dekker,Inc.: New York, 1997.
    (43) Cesarano, J.; Aksay, I. A.; Bleier, A. J. Am. Ceram. Soc. 1988, 71, 250.
    (44) Tang, F.; Uchikoshi, T.; Sakka, Y. J. Am. Ceram. Soc. 2002, 85, 2161.
    (45) Degen, A.; Kosec, M. Journal of the European Ceramic Society 2000, 20, 667.
    (46) McBride, M.; Baveye, P. Soil Sci.Soc.Am.J. 2002, 66, 1207.
    (47) Lowry, G. V.; Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. Environ. Sci. Technol 2007, 41, 284.
    (48) French, R.; Jacobson, A.; Kim, B.; Isley, S.; Penn, R.; Baveye, P. 2009.
    (49) Sato, T.; Ruch, R. Stabilization of Colloidal Dispersions by Polymer adsorption; Marcel Dekker,INC.: New York, 1980; Vol. 9.
    (50) Kimio Sumaru; Hideki Matsuoka; Yamaoka, H. J. Phys. Chem.
    1996, 100.
    (51) C. Chang; F. Fish; D. D. Muccio; Pierre, T. S. Macromolecules 1987, 20.
    (52) Shiro Kobayashi; Suh, K.-D.; Shirokura, Y. Macromolecules 1989,22
    (53) Zhu, X.; Uchikoshi, T.; Suzuki, T.; Sakka, Y. J. Am. Ceram. Soc. 2007, 90, 797.
    (54) Rbert Mszros; Laurie Thompson; Martin Bos; Groot, P. d. Langmuir 2002, 18, 6164.

    下載圖示 校內:2011-07-07公開
    校外:2011-07-07公開
    QR CODE