簡易檢索 / 詳目顯示

研究生: 呂威
Lu, Wei
論文名稱: 鋁-環氧樹脂界面裂紋受混合模式負載之疲勞裂紋成長
Fatigue growth of crack on the interface of aluminum and epoxy under mixed-moded loading
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 脫層混合模式彎曲樑應變能釋放率環氧樹脂
外文關鍵詞: delamination, mixed-moded bending beam, strain energy release rate, aluminum, epoxy
相關次數: 點閱:167下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今對於材料界面的在混合模式下的疲勞裂紋成長的資料缺乏,分析與預測少,因此為了預測相異界面及相關結構的可靠度,減少研發所需成本與時間,建立混合模式下的疲勞裂紋成長模型為一必須的重點,完整的界面脫層物理模型包括著界面破壞力學理論、界面脫層驅動力之分析與界面破壞韌性及疲勞脫層之實驗分析,藉此預測界面脫層的成長。本論文著重於界面疲勞脫層實驗部分,內容包括在不同相位角作用下的混合模式疲勞裂紋成長行為量測,並得到其界面脫層之疲勞特性常數,並發展其所對應之疲勞裂紋成長模型。
    本研究使用自製之混合模式拉伸試驗機,此拉伸機台透過兩個音圈馬達對混合模式彎曲樑施加不相等之作用力以構成混合模式彎矩,運用彈性基底之混合模式彎曲樑理論,從實驗數據反推試件的裂紋長度,並透過後處理求得材料界面疲勞脫層疲勞反應,針對鋁與環氧樹脂界面量測所得之疲勞特性曲線,發現隨著相位角相位角遞增,疲勞特性常數會隨著遞減,且裂紋穩定成長區也會跟著右移。

    In this research, a novel mixed mode bending setup was applied to study the fatigue growth of interface delamination. In this setup, two voice coil motors are used to apply two dissimilar bending end loads on a split-beam specimen formed by bonding two aluminum strips. The interface considered is the aluminum-epoxy interface on the mid-plane of the split-beam. By using an analytical formula based on the beam on elastic foundation theory, the crack length and the strain energy release rate can be calculated from the opening displacement of beam, which and the applied bending forces were measured throughout the fatigue experiment. The fatigue experiment was conducted under a prescribed loading mode mixity. In the experiment, the control program calculated and adjusted the applied end forces to maintain a constant phase angle at the prescribed value. The relationship between crack growth rate and the applied strain energy release rate were obtained by post-processing the experimental results.

    The fatigue growth characteristics of the Al-epoxy interface under various mode mixities were investigated. The steady-state cyclic fatigue delamination growth is found to display a power-law dependence on the applied strain energy release rate range. A phase-angle dependent fatigue crack growth model was constructed from curve fitting the steady-state cyclic fatigue delamination growth responses. The model can further be combined with delamination driving forces obtained for real structures containing the specific interface of interest to estimate the fatigue crack growth behavior and the corresponding structural reliability.

    目錄 摘要 I Abstract II 誌謝 VII 圖目錄 X 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究目的及方法 4 1.4論文架構 5 第二章 理論背景 6 2.1界面破壞力學理論 6 2.2界面疲勞裂紋成長 7 2.3 混合模式彎矩測試 10 圖2.3混合模式彎曲測試 15 第三章 實驗機台設置 19 3.1 實驗機台硬體 19 3.2 控制程式設計 22 3.3.1 初始值設定(Initial) 24 3.3.2 初始正弦波輸出(Initial sine wave output) 24 3.3.3 正弦波修正(Adjustment of force wave) 24 3.3.4 正弦波穩定輸出(Stable sine wave output) 28 3.4 機台驗證測試 28 第四章 鋁-環氧樹脂界面疲勞破壞實驗及結果討論 31 4.1混合模式彎曲樑界面疲勞試件概述 31 4.2 試件鋁背板準備 32 4.3 環氧樹脂與鋁背板黏合步驟 33 4.4 實驗步驟 34 4.5 實驗數據處理 35 4.6 不同相位角的實驗結果比較 38 第五章 結論與未來方向 47 5.1 結論 47 5.2 未來研究方向 48 參考文獻 49 附錄 LabVIEW程式內容 54

    [1]X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 18, pp. 150-153, 1995.
    [2]J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solids and Structures, vol. 33, pp. 65-78, 1996.
    [3]X. Liu, V. K. Sooklal, M. A. Verges and M. C. Larson, “Experimental study and life prediction on high cycle vibration fatigue in BGA packages,” Microelectronics Reliability, vol. 46, pp. 1128-1138, 2006.
    [4]K. M. Chen, K. K. Ho and D. S. Jiang, “Impact of lead free solder materials on board level reliability for low-K WLCSP,” Proceedings of the International Microsystems, Packaging, Assembly and Circuits Technology Conference, pp. 243-245, 2007.
    [5]M. W. Lane, R. H. Dauskardt, Q. Ma, H. Fujimoto and N. Krishna, “Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects,” MRS proceedings, vol. 563, pp. 251-256, 1999.
    [6]J. Yang and O. Paul, “Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes,” Sensors and Actuators A: Physical, Vol. 139, pp. 330-336, 2002.
    [7]Y. T. Yen and L. Y. Cheng, “Study peeling strength of tape carrier packaging and chip scale packaging,” Sensors and Actuators A: Physical, vol. 139, pp. 330-336, 2007.
    [8]James R. Reeder and John R. Crews Jr, “Mixed-mode bending method for delamination Testing,” AIAA Journal vol. 28, pp.1270-1276, 1990.
    [9]F. Ducept, P. Davies and D. Gamby, “An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites,” Composites: Part A, vol. 28A, pp. 719-729, 1997.
    [10]J. Guzek, H. Azimi and S. Suresh, “Fatigue crack propagation along polymer-metal interface in microelectronic packages,” IEEE Transactions on Components and Packaging Technology, vol. 20, pp. 496-504, 1997.
    [11]S. Y. Kook, J. M. Snodgrass, A. Kirtikar and R. H. Dauskardt, “Adhesion and reliability of polymer inorganic interfaces,” Journal of Electronic Packaging, vol.120, pp. 328-335, 1998.
    [12]F. Ducept, P. Davies and D. Gamby, “Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint,” International Journal of Adhesion & Adhesives, vol. 20, pp. 233-244, 2000.
    [13]H. Miyagawa, C. Sato and K. Ikegami, “Fracture toughness evaluation for multidirectional CFRP by the Raman coating method,” Composites Science and Technology, vol. 60, pp.2903-2915, 2000.
    [14]M. Kolluri, M. H. L. Thissen, J. P. M. Hoefnagels, J. A. W. van Dommelen and M. G. D. Geers, “In-situ characterization of interface delamination by a new miniature mixed mode bending setup,” International Journal of Fracture, vol. 158, pp. 183-195, 2009.
    [15]M.Kolluri, J.P.M Hoefnagels, J.A.W van Dommelen and M.G.D. Geers, “An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses,” Journal of Physics D: Applied Physics, vol. 44, pp. 5-34, 2011.
    [16]A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimens,” Engineering Fracture Mechanics, vol. 71, pp. 859-871, 2004.
    [17]J.K. Kim and C.S. Kim, “Fatigue crack growth behavior of rail steel under mode I and mixed mode loadings,” Material Science and Engineering, vol. A338, pp. 191-201, 2002.
    [18]K.H. Chung, W.H. Yang, “Mixed mode fatigue crack growth in aluminium plates with composite patches,” International Journal of Fatigue, vol.25, pp. 325-333, 2003.
    [19]T. Kusaka, M. Hojo, Y. W. Mai, T. Kurokawa, T. Nojima and S. Ochiaib, “Rate dependence of mode I fracture behaviour in carbon-fiber/epoxy composite laminats,” Composites Science and Technology, vol. 58, pp. 591-602, 1997.
    [20]G. Hug, P. Thevenet, J. Fitoussi and D.Baptiste, “Effect of the loading rate on mode I Interlaminar fracture toughness of laminated composites,” Engineering Fracture Mechanics, vol. 73, pp. 2456-2462, 2006.
    [21]A. A. Griffith, “The phenomena of rupture and flow in solids.,” Philosophical Transaction, vol. 221, pp. 163-198, 1920.
    [22]G. R. Irwin and J. A. Kies, “Critical Energy Rate Analysis of Fracture Strength,” Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.
    [23]P. C. Paris and F. Erdogan, “A critical analysis od crack propagation laws,” Journal of Basic Engineering, vol. 85, pp. 528-534, 1963.
    [24]J. K. Shang, “Interface fatigue crack growth in layered materials,” Preceedings of the Fatigue Conference, pp. 43-54, 1996.
    [25]朱書偉,聚醯亞胺與氮化矽薄膜界面之疲勞裂紋成長行為,國立成功大學,碩士論文,2010。
    [26]M. F. Kanninen, “An argumentted double beam model for studying crack propagation and arrest,” international Journal of Fracture, vol. 9, pp. 83-92, 1973.
    [27]王建智,含邊緣裂紋樑受混和模式彎矩之破壞力學分析,國立成功大學,碩士論文,2012。
    [28]D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations, Green’s function and surfaces waves in anisotropic elastic solids,” Phys. Norv, Vol. 7, pp. 13-19, 1973.
    [29]C. Dongye and T. C. T. Ting, “Explicit expressions of Barnett-Lothe tensors, and their associated tensors for orthotropic materials,” Quarterly of Applied Mathematics, Vol. 47, pp. 723-734, 1989.
    [30]C. Hwu, Anisotropic elastic plates, Springer, New York, 2010
    [31]惠汝生,LabvVIEW 8.X圖控程式應用,全華科技圖書公司,2006。

    下載圖示 校內:2018-01-01公開
    校外:2018-01-01公開
    QR CODE