簡易檢索 / 詳目顯示

研究生: 周鼎鈞
Chou, Ting-Chun
論文名稱: 雙層漫反射模型量化人體皮膚色團濃度與厚度
Quantification of chromophore concentrations and thickness of human skin using a two-layer diffuse reflectance model
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 漫反射光譜法雙層漫反射模型黑色素濃度GPU蒙地卡羅法類神經網路
外文關鍵詞: Diffuse reflectance spectroscopy, two-layer diffuse reflectance model, melanin concentration, GPU Monte Carlo, ANN
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 漫反射光譜法(Diffuse Reflectance Spectroscopy, DRS)是一種可非侵入且迅速獲得皮膚內如黑色素濃度、組織血氧等生理資訊的光學技術,其廣泛應用於各醫療領域中。目前DRS技術使用的演算法多數是採用均質模型,然而皮膚為多層結構,以均質模型量化得的色團濃度無法非常準確,目前應用皆為提供相對的色團濃度變化結果。因此,我們在本研究中發展雙層漫反射光譜演算法以獲得更準確的色團濃度。本研究透過GPU版蒙地卡羅法來建構大量雙層組織的漫反射光譜資料庫,再搭配人工類神經網路來進行雙層結構分類分析,並且為因應探討不同的皮膚結構而發展兩種雙層漫反射模型,分為上皮層-皮下脂肪層雙層模型與表皮層-真皮層雙層模型兩種分析方法,分別量化真皮層厚度與表皮層厚度、黑色素濃度、血液濃度。本研究透過模擬與仿體實驗來檢驗兩種雙層分析方法的可行性,並且以高頻超音波作為比較標準進行實際人體皮膚厚度量測。上皮層-皮下脂肪層雙層方法的人體實驗結果中,上層厚度最大誤差為21%(超音波結果1.8毫米;本研究的分析結果1.42毫米),最佳結果誤差為12%(超音波結果1.8毫米;本研究的分析結果1.58毫米)。至於表皮層-真皮層雙層模型分析方法的模擬驗證中,我們的雙層分析方法與均質模型相比可更準確量化色團濃度,雙層分析方法量化黑色素濃度與血液濃度最佳誤差為3%與2%,而均勻模型則為86%與15%,都有相當顯著的優化。綜合上述各點,本研究提出兩種的雙層分析方法不但具有高計算效率(2秒與0.4秒),準確性也有顯著的提升,可快速量化人體皮膚表皮層、真皮層厚度與黑色素濃度、血液濃度,極具作為臨床皮膚生理資訊分析的潛力。

    To accurately investigate skin chromophore concentrations and thickness, we need to evolved layered diffuse reflectance spectroscopy (DRS) models. Most of all light transport model of DRS used was supposed that the media is homogenous. It is a challenge that using homogenous model to quantify chromophore concentration when the sample structure is layered, like human skin. We present two two-layered models for different skin structure. First one is dermis-subcutaneous model and it was designed to acquire dermis thickness. The second one is epidermis-dermis model and it was deigned to accurately investigate concentration of melanin and blood. Using GPU Monte Carlo construed the database. The database for dermis-subcutaneous model were 45738 kinds of two-layer reflectance. The database for epidermis-dermis model were 2050 kinds of absorption spectra of two-layer model with homogenous ANN. By simulated and liquid phantom experiment, we verified both two-layer models could investigate its’ target. At human experiment, we compare epidermis and dermis thickness by our two-layer models with ultrasound measurement. We also compare the concentration by homogenous model with by our two-layer model. For dermis-subcutaneous model human experiment, the difference of our two-layer model and ultrasound measurement was less than 0.3 mm at two of three subjects. For epidermis-dermis model, our epidermis-dermis two-layer model was most accurately quantification of chromophore concentrations model with our system at simulated experiment. The time required of two two-layer models were 2s and 0.4s. Using our two-layer models can accurately investigate skin chromophore concentrations and thickness in the short time.

    摘要 III 致謝 IX 目錄 X 第一章. 緒論 1 1.1. 人體皮膚結構與其色團 1 1.2. 漫反射光譜法 1 1.3. 研究問題 2 第二章. 原理 4 2.1. 漫反射光譜學 4 2.2. 蒙地卡羅法 5 2.2.1 光傳播於多層組織蒙地卡羅法 6 2.2.2 圖形處理器 12 2.2.3 圖形處理器版蒙地卡羅法 14 2.3. 人工類神經網路 15 第三章. 材料與方法 19 3.1. 漫反射光譜系統架構 19 3.2. 上皮層與皮下脂肪之雙層模型 21 3.2.1. 多距離皮-脂雙層模型資料庫可分辨性分析 22 3.2.2. 皮-脂雙層分析方法與模擬測試 23 3.2.3. 多距離量測架構與雙層液態仿體實驗 25 3.2.4. 人體超音波量測與皮脂-雙層分析 27 3.3. 表皮層與真皮層雙層模型 28 3.3.1. Saager表真-雙層模型驗證 29 3.3.2. 黑色素濃度類神經網路 31 3.3.3. 表真-雙層模型分析方法與模擬測試 33 3.3.4. 人體超音波量測與表真-雙層分析 35 第四章. 結果與討論 36 4.1 上皮層與皮下脂肪層雙層模型 36 4.1.1 多距離雙層吸收與散射資料庫可分辨性分析 36 4.1.2 皮脂-雙層分析方法模擬測試結果 40 4.1.3 雙層液態仿體實驗結果 41 4.1.4 人體超音波量測結果與皮脂-雙層分析結果 48 4.2 表皮層與真皮層雙層模型 53 4.2.1. Saager雙層公式模擬與驗證結果 53 4.2.2. 黑色素類神經網路非點上測試 60 4.2.3. 表真-雙層分析方法模擬驗證結果 63 4.2.4. 人體表真-雙層分析與超音波量測結果 73 第五章. 結論與未來工作 79 5.1. 結論 79 5.2. 未來工作 81 附錄一 90

    [1] Rolf B. Saager, Ata Sharif, Kristen M. Kelly, Anthony J. Durkin, "In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy," Journal of Biomedical Optics, vol. 21, no. 5, pp. 057001-1-9, 2016.
    [2] Yu-Kai Liao, Sheng-Hao Tseng, "Reliable recovery of the optical properties of multi-layer turbid media by iteratively using a layered diffusion model at multiple source-detector separations.," Biomedical optics express, vol. 5, no. 3, pp. 975-989, 2014.
    [3] Saager, Rolf B.; Truong, Alex; Cuccia, David J.; Durkin, Anthony J., “Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy.,” Journal of biomedical optics, p. 077002, 2011.
    [4] Chen, Yu-Wen; Tseng, Sheng-Hao, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomedical Optics Express, pp. 747-760, 2015.
    [5] S. L. Jacques, "Skin optics," Oregon Medical Laser Center News, pp. 1-7, 1998.
    [6] Bashkatov, A N, Genina, E A, Kochubey, V I, Tuchin, V V, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D: Appl. Phys, pp. 2543-2555, 2005.
    [7] S. L. Jacques, "Optical properties of biological tissues: a review," PHYSICS IN MEDICINE AND BIOLOGY, vol. 58, no. 11, pp. 37-61, 2013.
    [8] Takanori Igarashi, Ko Nishino, Shree K. Nayar, "The Appearance of Human Skin: A Survey," Foundations and Trends® in Computer Graphics and Vision, vol. 3, no. 1, pp. 1-95, 2007.
    [9] Jan Laufer, Ben Cox, Edward Zhang, Paul Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," APPLIED OPTICS, vol. 49, no. 8, pp. 1219-1233, 2010.
    [10] Chong SP, Merkle CW, Leahy C, Radhakrishnan H, Srinivasan VJ., "Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography.," Biomed Opt Express., vol. 24, no. 6, pp. 1429-1450, 2015.
    [11] Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, Nikiforos Kollias, "Chromophore concentrations, absorption and scattering properties of human skin in-vivo," Opt Express, vol. 17, no. 17, p. 14599–14617, 2009.
    [12] Laufer J, Delpy D, Elwell C, Beard P., "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.," Phys Med Biol, vol. 52, no. 1, pp. 141-168, 2007.
    [13] R M P Doornbos, R Lang, M C Aalders, F W Crossd and H J C M Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Physics in Medicine and Biology, vol. 44, no. 4, pp. 967-981, 1999.
    [14] A. Kienle, T. Glanzmann, "In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model," Phys. Med. Biol., vol. 44, no. 11, p. 2689–2702, 1999.
    [15] George Zonios, Lev T. Perelman, Vadim Backman, Ramasamy Manoharan, Maryann Fitzmaurice, Jacques Van Dam, Michael S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Applied Optics, vol. 38, no. 31, pp. 6628-6637, 1999.
    [16] Irene Georgakoudi, Brian C. Jacobson, Jacques Van Dam, Vadim Backman, Michael B. Wallace, Markus G. Müller, Qingguo Zhang, Kamran Badizadegan∥, Don Sun, Gordon A. Thomas, Lev T. Perelman, Michael S. Feld, "Fluorescence reflectance and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus.," Gastroenterology, vol. 120, no. 7, pp. 1620-1629, 2001.
    [17] Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N., "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans Biomed Eng., vol. 50, no. 11, pp. 1233-1242., 2003.
    [18] Wang, Lihong V., Wu, Hsin-I, "Monte Carlo Modeling of Photon Transport in Biological Tissue," Biomedical Optics: Principles and Imaging, pp. 37-65, 2007.
    [19] Fang, C; Brokl, D; Brand, R E; Liu, Y, "Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth," Biomed Opt Express, vol. 2, no. 4, pp. 838-849, 2011.
    [20] Frédéric Bevilacqua, Christian Depeursinge, "Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path," Journal of the Optical Society of America A, vol. 16, no. 12, pp. 2935-2945, 1999.
    [21] Alessandro Torricelli, Antonio Pifferi, Lorenzo Spinelli, Rinaldo Cubeddu, Fabrizio Martelli, Samuele Del Bianco, Giovanni Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett, vol. 95, no. 7, p. 078101.
    [22] Alerstam, Erik, Lo, William Chun Yip, Han, Tianyi David, Rose, Jonathan, Andersson-Engels, Stefan, Lilge, Lothar, "Next-generation acceleration and code optimization for light transport in turbid media using GPUs.," Biomedical optics express, pp. 658-75, 2010.
    [23] Demuth Howard, Mark Beale, Martin Hagan, "Neural Network Toolbox™ 6 User’s Guide," The MathWorks, 2009.
    [24] A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, "Liquid phantom for investigating light propagation through layered diffusive media.," Optics express, vol. 12, no. 10, pp. 2102-2111, 2004.
    [25] Rolf B. Saager, Clement Kondru, Kendrew Au, Kelly Sry, Frederick, Ayers, Anthony J. Durkin, "Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging," SPIE 7567, Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue II, vol. 7567, no. 756706, pp. 1-8, 2010.
    [26] Lee, Y.; Hwang, K., "Skin thickness of Korean adults," Surgical and Radiologic Anatomy, pp. 183-189, 2002.
    [27] Yu-Wen Chen, Chien-Chih Chen, Po-Jung Huang, Sheng-Hao Tseng, "Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation," Biomedical Optics Express, vol. 7, no. 4, pp. 1496-1510, 2016.
    [28] Jesse Weissman, Tom Hancewicz, Peter Kaplan, "Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis.," Optics express, vol. 12, no. 23, pp. 5760-5769, 2004.
    [29] Katherine W. Calabr, Irving J. Bigio, "Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations.," Journal of biomedical optics, vol. 19, no. 7, pp. 075005-1-15, 2014.

    下載圖示 校內:2022-01-10公開
    校外:2022-01-10公開
    QR CODE