| 研究生: |
賴宗亨 Lai, Tzung-Heng |
|---|---|
| 論文名稱: |
結合凝膠化學反應與微流晶片製造褐藻酸鈣微粒子之研究 Using a Microchip and Internal/External Gelation Reactions for Calcium Alginate Microparticles Generation |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 內部膠化法 、微流晶片 、外部膠化法 、均一粒徑 、褐藻酸鈣 |
| 外文關鍵詞: | Ca-alginate, internal gelation, microchamnnel, monodispersed micropartles, external gelation |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在藥物使用的範疇中,如果想要使藥品能夠完全的發揮出療效,藥物的控制與釋放一向是研究的重點;而為了使藥物能達成控制與釋放的目的,藥物載體的利用是不可或缺的一項技術。然而,在各式各樣的藥物載體中,乳化劑型的藥物載體,不論在水溶性或是脂溶性藥物的應用上皆有著極佳的藥物增溶性,是極受重視的一種藥物載體類別。並且在過往的研究文獻中發現,藥物載體的粒徑越為均一,則在應用於藥物的控制與釋放上就越有優勢,但在過去文獻中所提出的製作方式,均無法有效的獲得均一粒徑的載體。
由於乳化劑型藥物載體的發展潛力,因此本研究利用鞘流現象設計了一組微流道晶片設備,用於生成均一粒徑乳化球,並且選用常見於藥物載體的褐藻酸鈉材料做為應用。本研究中結合了內部膠化與外部膠化兩種不同生成褐藻酸鈣的機制,希望將此生成均一粒徑乳化球的微流晶片設備,應用於均一粒徑褐藻酸鈣微粒子的製備上。
本研究成功的利用所設計的微流道晶片設備,生成均一粒徑乳化球,並且在褐藻膠的應用上,也將此兩種傳統褐藻酸鈣微粒子的生成機制,在個別的實驗設計中實現,並且探討了分離相與連續相流量改變與生成之乳化球大小之關係。由實驗結果中發現,當固定分離相流量時,越大的連續相流量,將得以生成越小的乳化球;相對的,在固定連續相流量的情形下,當分離相的流量越小,所生成的乳化球尺寸也越小。
In this paper the manipulation of Ca-alginate microspheres, using a microfluidic chip, for the encapsulation of gold nanoparticles with internal and external gelation methods is presented. Our strategy is based on hydrodynamic-focusing on the forming of a series of self-assembling sphere structures, the so-called water-in-oil (W/O) emulsions, in the cross-junction microchannel.
In the internal gelation method, these fine emulsions, consisting of 1.5% w/v Na-alginate and 1.0% w/v calcium carbonate, are then dripped into an oil solution containing 20% v/v glacial acetic acid and 1% v/v Tween 80 to accomplish Ca-alginate microspheres in an efficient manner. The mechanism is that acetic acid reacts with the calcium carbonate to release the calcium ions, and these calcium ions are then crosslinking with the Na-alginate to produce Ca-alginate microspheres.
In the external gelation method, these fine emulsions, consisting of aqueous Na-alginates, are then dripped into a solution of 20% calcium salt to accomplish Ca-alginate microspheres in an efficient manner.
We have demonstrated that one can control the size of chitosan microparticles from 100 µm to 1000 µm in diameter (with a variation less than 10%) by altering the relative sheath/sample flow rate ratio The microfluidic chip is capable of generating relatively uniform micro-droplets and has the advantages of active control of droplet diameter, simple and low cost process, and high throughput.
[1] L. G. Griffith, "Polymeric biomaterials," Acta Materialia, 48, 263, 2000.
[2] L. Brannon-Peppas, “Polymers in controlled drug delivery,” Medical Plastics and Biomaterials, 4, 34, 1997.
[3] R. Langer, "Drug delivery and targeting," Nature, 392, 5,1998.
[4] X. Z. Shu, K. J. Zhu amd W. Song, "Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release," International Journal of Pharmaceutics, 212, 19, 2001.
[5] A. Lamprecht, H. R. Torres, U. Schafer and C. M. Lehr, "Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease," Journal of Controlled Release, 69, 445, 2000.
[6] R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B. Yang, M. Chasin and M. Brem, "Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain," Cancer Research, 53, 329, 1993.
[7] L. Mua and S. S. Feng, "A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS," Journal of Controlled Release, 86, 33, 2003.
[8] I. C. Kwon, Y. H. Bae and S. W. Kim, "Electrically credible polymer gel for controlled release of drugs," Nature, 354, 291, 1991.
[9] J. Siepmann and A. Gpferich, "Mathematical modeling of bioerodible, polymeric drug delivery systems," Advanced Drug Delivery Reviews, 48, 229, 2001.
[10] D. Attwood, L. R. Currie and P. H. Elworthy, “Studies of solubilized micellar solutions. I. Phase studies and particle size analysis of solutions formed with nonionic surfactants,” Journal of Colloid and Interface Science, 46, 249, 1974.
[11] H. N. Bhargava, A. Narurkar and L. M. Lieb, “Using microemulsions for drug delivery,” Journal of Pharmacy Technology, 11, 46, 1987.
[12] A. Yaghmur, A. Aserin and N. Carti, “Phase behavior of microemulsions based on food-grade nonionic surfactants: Effect of polyols and short-chain alcohols,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, 71, 2002.
[13] M. Kreilgaard, “Influence of microemulsions on cutaneous drug delivery,” Advanced Drug Delivery Reviews, 54, S77, 2002.
[14] M. Kreilgaard, E. J. Pedersen and J. W. Jaroszewski, “NMR characterisation and transdermal drug delivery potential of microemulsion systems,” Journal of Controlled Release, 69, 421, 2000.
[15] T. J. Franz, “Percutaneous absorption on the relevance of in vitro data,” Journal of Investigative Dermatology, 64, 190, 1975.
[16] U. Schmalfu, R. Neubert and W. Wohlrab, “Modification of drug penetration into human skin using microemulsions,” Journal of Controlled Release, 46, 279, 1997.
[17] M. Trotta, S. Morel and M. R. Gasco, “Effect of oil phase composition on the skin permeation of felodipine from o/w microemulsions,” Die Pharmazie, 52, 50, 1997.
[18] M. J. Alvarez-Figueroa and J. Blanco-Mendez, “Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions,” International journal of pharmaceutics, 215, 57, 2001.
[19] L. Boltri, S. Morel, M. Trotta and M.R. Gasco, “In vitro transdermal permeation of nifedipine from thickened microemulsions,” Journal de pharmacie de Belgique, 49, 315, 1994.
[20] S. Kantaria, G. D. Rees and M. J. Lawrence, “Gelatin-stabilised microemulsion-based organogels: Rheology and application in iontophoretic transdermal drug delivery,” Journal of Controlled Release, 60, 355, 1999.
[21] J. Kemken, A. Ziegler and B. W. Muller, “Investigations into the pharmacodynamic effects of dermally administered microemulsions containing beta-blockers,” The Journal of Pharmacy and Pharmacology, 43, 679, 1991.
[22] J. Kemken, A. Ziegler and B. W. Muller, “Pharmacodynamic effects of transdermal bupranolol and timolol in vivo: Comparison of microemulsions and matrix patches as vehicle,” Methods and Findings in Experimental and Clinical Pharmacology, 13, 361, 1991.
[23] J. Kemken, A. Ziegler and B. W. Muller, “Influence of supersaturation on the pharmacodynamic effect of Bupranolol after dermal administration using microemulsions as vehicle,” Pharmaceutical Research, 9, 554, 1992.
[24] R. N. Reusch and H. L. Sadoff, “Putative structure and functions of a Poly--hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes,” Proceedings of the National Academy of Sciences, 85, 4176, 1988.
[25] T. Yotsuyanagi, T. Ohkubo, T. Ohhashi and K. Ikeda, “Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels,” Chemical Pharmaceutical Bulletin, 35, 1555, 1987.
[26] J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi and B. J. Lee, “Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles,” International Journal of Pharmaceutics , 210, 51, 2000.
[27] A. Martinsen, G. Skjk-Brk and O. Smidsrd, “Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads,” Biotechnology and bioengineering, 33, 79, 1989.
[28] W. Sabra, A. P. Zeng and W. D. Deckwer, “Bacterial alginate: physiology, product quality and process aspects,” Applied Microbiology and Biotechnology, 56, 315, 2001.
[29] S. Takka and F. Acartrk, “Calcium alginate microparticles for oral administration: I. Effect of sodium alginate type on drug release and drug entrapment efficiency,” Journal of Microencapsulation, 16, 275, 1999.
[30] P. D. Vos, B. D. Haan and R. V. Schilfgaar, “Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules,” Biomaterials, 18, 273, 1997.
[31] H. Akiyama, T. Endo, R. Nakakita, K. Murata, Y. Yonemoto and K. Okayama, “Effect of depolymerized alginates on the growth of bifidobacteria,” Biosci Biotechnol Biochem, 56, 355, 1992.
[32] C. D. Scott, “Immobilized cells: A review of recent literature,” Enzyme and Microbial Technology, 9, 66, 1987.
[33] N. Gerbsch and R. Buchholz, “New processes and actual trends in Biotechnology,” FEMS Microbiology Reviews, 16, 259, 1995.
[34] X. D. Liu, W. Y. Yu, Y. Zhang, W. M. Xue, W. T. Yu, Y. Xiong, X. J. May, Y. Chen and Q. Yuan, “Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources,” Journal of Microencapsulation, 19, 775, 2002.
[35] G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres and M. Rinaudo, “Physico-chemical characterization of Ca-alginate microparticles produced with different methods,” Biomaterials, 20, 1427,1999.
[36] A. Kikuchi, M. Kawabuchi, M. Sugihara and Y. Sakurai, “Pulsed dextran release from calcium-alginate gel beads,” Journal of Controlled Release, 47, 21, 1997.
[37] T. stberg, E. M. Lund and C. Graffner,” Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media,” International journal of pharmaceutics, 112, 241, 1994.
[38] P. S. J. Cheetham, K. W. Blunk and C. Bucke, “Physical studies on cell immobilization using calcium alginate gels,” Biotechnology and Bioengineering, 21, 2155, 1979.
[39] D. Knorr and J. Berlin, “Effects of immobilization and permeabilization procedures on growth of Chenopodium rubrum cells and amaranthin concentration,” Journal of Food Science, 52, 1397, 1987.
[40] K. Redenbaugh, B. D. Paasch, J. W. Nichol, M. E. Kossler, P. R. Viss and K. A. Walker, “Somatic seeds: Encapsulation of asexual plant embryos,” Bio-Technology, 4, 797, 1986.
[41] I. Constantinidis, I. Rask, R. C. Long and A. Sambanis, “Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped bTC3 mouse insulinoma cells,” Biomaterials, 20, 2019, 1999.
[42] A. A. Hardikar, M. V. Risbud and R. R. Bhonde, “Improved post-cryopreservation recovery following encapsulation of islets in chitosan-alginate microcapsules,” Transplantation Proceedings, 32, 824, 2000.
[43] S. S. Bang and M. Pazirandeh “Physical properties and heavy metal uptake of encapsulated Escherichia coli expressing a metal binding gene (NCP)” Journal of Microencapsulation, 16, 489, 1999.
[44] I. K. Yoo, G. H. Seong, H. N. Chang and J. K. Park, “Encapsulation of lactobacillus casei cells in liquid-core alginate capsules for lactic acid production,” Enzyme and Microbial Technology, 19, 428, 1996.
[45] X. Li, K. Abdi and S. J. Mentzer, “Cloning hybridomas in a reversible three-dimensional alginate matrix,” Hybridoma, 11, 645, 1992.
[46] G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres and M. Rinaudo, “Physico-chemical characterization of Ca-alginate microparticles produced with different methods,” Biomaterials, 20, 1427, 1999.
[47] C. M. Silva, A. J. Ribeiro, M. Figueiredo, D. Ferreira and F. Veiga, “Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation,” The AAPS Journal, 7, E903, 2006.
[48] K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A. G. Karydas, and D. S. Ithakissios, “PLGA-mPEG nanoparticles of cisplatin: In vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties,” Journal of Controlled Release, 79, 123, 2002.
[49] D. A. Drew, and R. T. Lahey, “Phase distribution mechanisms in two-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, 91, 1982.
[50] R. T. Lahey and D. A. Drew, “The aanalysis of two-phase flow and heat transfer using a multidimensional, four field, two fluid model,” Nuclear Engineering and Design, 204, 29-44, 2001.
[51] T. C. Kuo, A. S.Yang and C. C. Chieng, ‘‘Bubble size and system pressure effects on phase distribution for two phase turbulent bubbly flows,’’ Journal of Mechanical Engineering Science, 215, 121, 2001.
[52] M. Ishii, “Thermal-fluid dynamics of two-phase flow,” Eyrolles, Paris, 1975.
[53] M. Ishii, and K. Mishima, “Two-fluid model hydrodynamic constitutive relation,” Nuclear Engineering and Design, 82, 107, 1984.
[54] M. Ishii and N.Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE Journal, 25, 843, 1979.
[55] R. T. Lahey, “The analysis of phase separation and phase distribution phenomena using two-fluid models,” Nuclear Engineering and Design, 122, 17, 1990.
[56] P. J. C. Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, 37, 1953.
[57] W. H. Coulter, “High speed automatic blood cell and cell size analyzer,” Proceedings of the National Electronics Conference, 1034, 1956.
[58] R. Miyake, H. Ohki, I. Yamazaki, and R. Yabe, “A development of micro sheath flow chamber,” Proceedings of 4th IEEE MEMS, 265, 1991.
[59] K. Seiler, D. J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, 253, 1992.
[60] F. F. Mandy, M. Bergeron and T. Minkus, “Principles of flow cytometry,” Transfusion Science, 16, 303, 1995.
[61] P. L. Judson, L. L. Van, “Flow cytometry,” Primary Care Update for OB/GYNS, 4, 87, 1997.
[62] B. C. Ferrari, G. Vesey, K. A. Davis, M. Gucci and D. Veal, “A novel two-color flow cytometric assay for the detection of cryptosporidium in environmental water samples,” Cytometry, 41, 216, 2000.
[63] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristiniab and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab On a Chip, 4, 292, 2004.
[64] Y. C. Tan and A. P. Lee, “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system,” Lab On a Chip, 5, 1178, 2005.
[65] S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Latter, 82, 364, 2003.
[66] V. Cristini and Y. C. Tan, “Theory and numerical simulation of droplet dynamics in complex flows—a review,” Lab On a Chip, 4, 257, 2004.
[67] GCC LaserPro Laser Engraver, Cutting Engraving System, http://www.laserproi.com/en/engr_prod_model_detail.php?ID=English_040909014546, GCC, 2003.