簡易檢索 / 詳目顯示

研究生: 林佳霖
Lin, Chia-Lin
論文名稱: 應用感性工學與類神經網路輔助毛線布料設計之研究
Using Kansei Engineering and Neural Networks in Yarns Design
指導教授: 謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 140
中文關鍵詞: 紋理特徵織片樣本感性工學類神經網路色彩特徵織法材質
外文關鍵詞: Kansei engineering, neural network, yarn, color feature, texture feature
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立了一套以感性工學為基礎的毛線織片分析流程,結合類神經網路將消費者對毛線織片的意象感覺反應在設計師的設計作品上,藉以加速設計的流程,輔助設計師能夠以較有效率且客觀的方式進行織片設計。紡織業在台灣是一個很成熟的產業,由於科技進步、技術發達、消費者意識的抬頭,加速了產品的生命週期,如何幫助設計師掌握消費者的感覺,藉以提升產品創新的時效性,是一項不容忽視的問題。

    本研究利用明大廠商提供的毛線織片樣本 50 片,採問卷方式請受測者從 10 組視覺加觸覺(視觸覺)、10 組觸覺感性語彙對織片樣本進行評分。撰寫程式擷取出樣本影像的色彩黏著度當作其色彩特徵,LBP(局部二位元圖形,local binary pattern)、SCOV、SAC、VAR等分析影像灰階值彼此相關性的方法進行影像紋理特徵的擷取,並將廠商所提供織片的織法與材質資料加以編碼。以色彩特徵值、紋理特徵值、織法與材質編碼為輸入層,感性語彙得分為輸出層,以45個織片樣本進行倒傳遞類神經網路訓練。以5個測試織片樣本進行測試,發現以VAR紋理特徵加織法與材質編碼為輸入層的視觸覺類神經網路驗證結果,在視觸覺感性值的預測有很高的準確性,LBP紋理特徵加材質與織法編碼為輸入層的觸覺類神經網路驗證結果在觸覺感性值的預測有很高的準確性。藉由訓練完成的類神經網路,設計師能根據新樣本的色彩特徵值、紋理特徵值、織法與材質編碼而計算出新的感性意象值,如此可提高設計師在毛線織片設計的效率與水準。

    This research established a set take the Kansei Engineering as the foundation flow, and combined neural network to addresses the issue of how humans perceive to the yarn and response on the designers’ new works, so as to the acceleration design flow assisted the designer able to carry on design by more effective also an objective way. The textile industry was already the very mature industry in Taiwan's, because the advance in technology, the technology were developed gaining ground which, the consumer realized, has accelerated the product life cycle, formerly admired the artificial platoon regulation the way because the effectiveness for a period of time and the accuracy the insufficient demand, the product innovation has been gradually regarded by the enterprise the creation value.

    The 50 pieces yarn samples provided with Mean Time(明大) enterprise co., ltd.. The subjects were invited to measure their subjective impression of 50 different yarns using the Semantic Differential Method (SD). Composes the program to extract the Color Coherent Vector(CCV) as the color features of yarn images, LBP (local binary pattern), SCOV, SAC, VAR to analyze gray-scale of image as texture features, and to code the information of yarns’ weaves and the material. Take the color features, the texture features, the weave and the material’s code as the input layer, and the output layer is the value of 10 impression words. The Back-Propagation Networks(BPN)was trained to approximate the relationship between the kansei features and the features of yarns. The two ways are correlated with each other through a Neural Network mechanism, which is used to correlate the two feature spaces such that the retrieval system can enhance the designer to design the yarns efficiently and conveniently.

    中文摘要 ……………………………………………………………………………… I 英文摘要 ……………………………………………………………………………… II 誌謝 …………………………………………………………………………………… III 目錄 …………………………………………………………………………………… IV 圖目錄 ………………………………………………………………………………… VIII 表目錄 ………………………………………………………………………………… XII 第一章 緒論 1-1 前言 ……………………………………………………………………………… 1 1-2 研究動機 ………………………………………………………………………… 1 1-3 研究目的 ………………………………………………………………………… 2 1-4 研究範圍與限制 ………………………………………………………………… 2 1-5 研究架構 ………………………………………………………………………… 3 第二章 文獻探討 2-1 類神經網路 ……………………………………………………………………… 4 2-2 感性工學 ………………………………………………………………………… 5 2-3 色彩體系與人類視覺感知 ……………………………………………………… 6 2-4 影像搜尋 ………………………………………………………………………… 9 2-4.1 色彩特徵 …………………………………………………………………… 9 2-4.2 紋理特徵 …………………………………………………………………… 13 第三章 研究理論架構 3-1 感性工學 ………………………………………………………………………… 16 3-2 類神經網路 ……………………………………………………………………… 19 3-2.1 類神經網路介紹 …………………………………………………………… 19 3-2.2 倒傳遞類神經網路 ………………………………………………………… 21 3-3 集群分析 ………………………………………………………………………… 26 3-3.1 階層式分群法 ……………………………………………………………… 26 3-3.2 非階層式分群法 …………………………………………………………… 27 3-4 KJ法 ……………………………………………………………………………… 27 3-4.1 適用範圍 …………………………………………………………………… 28 3-4.2 KJ 法繪製步驟 …………………………………………………………… 28 3-4.3 使用要領 …………………………………………………………………… 29 第四章 研究步驟 4-1 研究步驟 ………………………………………………………………………… 30 4-2 織片樣本收集 …………………………………………………………………… 35 4-3 織片樣本相關感性語彙收集 …………………………………………………… 37 4-3.1 形容詞語彙收集 …………………………………………………………… 37 4-3.2 感性語彙挑選 ……………………………………………………………… 37 4-4 感性工學問卷 …………………………………………………………………… 39 4-5 織片樣本拍攝 …………………………………………………………………… 41 4-6 織片樣本特徵擷取 ……………………………………………………………… 42 4-6.1 織片樣本圖片色彩特徵的擷取 …………………………………………… 43 4-6.2 織片樣本圖片紋理特徵的擷取 …………………………………………… 44 4-7 類神經網路驗證樣本挑選 ……………………………………………………… 48 4-8 織片資料編碼 …………………………………………………………………… 49 4-9 倒傳遞類神經訓練類型 ………………………………………………………… 51 4-10 倒傳遞類神經網路建構 ………………………………………………………… 52 4-11 以影像特徵為輸入值的類神經網路訓練 ……………………………………… 53 4-11.1 以色彩特徵為輸入值的視觸覺類神經訓練 ……………………………… 54 4-11.2 以紋理特徵為輸入值的視觸覺類神經訓練 ……………………………… 56 4-11.3 以色彩特徵、紋理特徵為輸入值的視觸覺類神經訓練 ………………… 62 4-11.4 以紋理特徵為輸入值的視觸覺類神經訓練 ……………………………… 68 4-12 以織片樣本織法與材質編碼為輸入值的類神經訓練 ………………………… 75 4-12.1 視觸覺問卷的類神經訓練 ………………………………………………… 75 4-12.2 觸覺問卷的類神經訓練 …………………………………………………… 79 4-13 結合影像特徵與織法與材質編碼的類神經訓練 ……………………………… 81 4-13.1 紋理特徵+織法與材質編碼為輸入值的視觸覺類神經訓練 …………… 81 4-13.2 色彩特徵+紋理特徵+織法與材質編碼為輸入值的視觸覺類神經 訓練 ………………………………………………………………………… 88 4-13.3 紋理特徵+織法與材質編碼為輸入值的觸覺類神經訓練 ……………… 94 4-14 總結 ……………………………………………………………………………… 101 第五章 結論與未來展望 5-1 類神經網路訓練結果探討 ……………………………………………………… 104 5-1.1 色彩特徵與視觸覺感性值 ………………………………………………… 105 5-1.2 紋理特徵與視觸覺、觸覺感性值 ………………………………………… 106 5-1.3 織法編碼與視觸覺、觸覺感性值 ………………………………………… 107 5-1.4 紋理特徵、織法編碼與視觸覺、觸覺感性值 …………………………… 108 5-1.5 色彩特徵、織法編碼與視觸覺感性值 …………………………………… 108 5-1.6 色彩特徵、紋理特徵、織法編碼與視觸覺感性值 ……………………… 109 5-2 研究貢獻 ………………………………………………………………………… 109 5-3 未來展望 ………………………………………………………………………… 111 參考文獻 ……………………………………………………………………………… 112 附錄 …………………………………………………………………………………… 119

    英文部分
    [1] Ajay Kumar, “Neural network based detection of local textile defects,” Pattern Recognition, Volume 36, Issue 7, pp.1645-1659, 2003.
    [2] Bugao Xu and Sheng Lin, “Automatic color identification in printed fabric images by a fuzzy-neural network,” AATCC Review, 2(9), pp.42-45, 2002.
    [3] CCIR, “Encoding paramenters of digital television for studios,” CCIR Recommendation 601-2, Int. Radio Consult. Committee, Geneva, Switzerland, 1990.
    [4] C. J. Barnes, T. H. C. Childs, B. Henson, and C. H. Southee, “Surface finish and touch—a case study in a new human factors tribology,” Wear 257, pp.740-750, 2004.
    [5] D. Guillamet, and J. Vitria, “A comparison of global versus local color histograms for object recognition,” The 15th International Conference on Pattern Recognition, Vol.2, pp.422 –425, 2000.
    [6] Dan Ashlock and Jennifer Davidson, “Texture synthesis with tandem genetic algorithms using nonparametric partially ordered Markov models,” International Society for Optical Engineering, 1995.
    [7] Dan Ashlock and Jennifer Davidson, “Genetic algorithms for automated texture classification,” The International Society for Optical Engineering, 1997.
    [8] Ertugrul Çam, Erol Arcaklıo lu, Abdullah Çavu o lu and Bilge Akbıyık, “A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks,” RENEWABLE ENERGY 30, FEB 2005.
    [9] Greg Pass, Ramin Zabih, and Justin Miller, “Comparing images using color coherence vectors,” In Proceedings of ACM Multimedia 96, Boston, MA, USA, pp. 65-73, 1996.

    [10] J. Hafner, “Efficient color histogram indexing for quadratic form distance functions,” IEEE Transactions on Pattern Analysis and Machine intelligence, pp.729-736, 1996.
    [11] J. L. Woo, and M. W. Suh, “Engineering at the interface between Kansei engineering and fabric objective measurement,” Proc. 6th Asian Textile Conference, August 22 -24, 2001, Hong Kong.
    [12] J. Puzicha, J. Buhmann, Y. Rubner, C. Tomasi, “Empirical evaluation of dissimilarity for color and texture,” 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999.
    [13] J. R. Smith, and Shih-Fu Chang, “Single color extraction and image query,” In Proceedings of International Conference on Image Processing, Vol. 3, pp.528-531,1995.
    [14] J. Ruiz-del-Solar and M. Jochmann, “On determining human description of textures,” Proc. of the 12th Scandinavian Conf. on Image Analysis – SCIA 2001, Bergen, Norway, pp.288 – 294, June 2001.
    [15] J. Ruiz-del-Solar, P. Navarrete, and P. Parada, “TEXRET: An Interactive TEXture RETrieval System,” UPGRADE (The European Online Magazine for the IT Professional), Vol. III, No. 3, pp. 70 – 77, June 2002.
    [16] Jean-Francois Petiot, Bernard Yannou, “Measuring consumer perceptions for a better comprehension, specification and assessment of product semantics,” International Journal of Industrial Ergonomics 33, 2004.
    [17] John A. Black Jr, Kanav Kahol, Priyamvada Tripathi, Prem Kuchi, Sethuraman Panchanathan, “Indexing natural images for retrieval based on kansei factors,” Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ 85287, 2003.

    [18] K. Sethi and I. Coman, “Image retrieval using hierarchical self-organizing feature maps,” Pattern Recognition LettersVolume 20, Issues 11-13, pp. 1337-1345, 1999.
    [19] Kazutoshi Tsutsumi, “A development of the building Kansei information retrieval system,” International Conference on Computing in Civil and Building Engineering , ICCCBE , 10, June 02-04, 2004.
    [20] M. Nagamachi, “Kansei engineering: A new ergonomics consumer-oriented technology for product evelopment,” International Journal of Industrial Ergonomics, Vol. 15, pp. 3-10, 1995.
    [21] M. Pietikäinen, T. Ojala and Z. Xu, “Rotation-invariant texture classification using feature distributions,” Pattern Recognition 33, pp. 43–52, 2002.
    [22] M. C. Chuang, C. C. Chang and S. H. Hsu, “Perceptual factors underlying user preferences toward product form of mobile phones,” International Journal of Industrial Ergonomics, Vol. 27, pp.247-258, 2001.
    [23] M. D. Shieh, C. C. Cheng, “Development of an intelligent fabric retrieval system using computer-based Kansei algorithm,” 6th Asia Design Conference, Tsukuba, Japan, Oct. 14-17, 2003.
    [24] M. J. Swain, and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis., Vol.7, No.1, pp.11-32, 1991.
    [25] Markus Turtinen, Topi M¨aenp¨a¨a, and Matti Pietik¨ainen, “Texture classification by combining local binary pattern features and a self-organizing map,” Scandinavian Conference on Image Analysis, pp. 1162-1169, 2003.
    [26] Markus Turtinen, Matti Pietik¨ainen, Olli Silv´en, Topi M¨aenp¨a¨a and Matti Niskanen, “Texture-based paper characterization using non-supervised clustering,” Proc. 6th International Conference on Quality Control by Artificial Vision (SPIE Vol. 5132), May 19-23, Gatlinburg, Tennessee, pp. 350-358, 2003.
    [27] N.S. Visen, J. Paliwal, D.S. Jayas and N.D.G. White, “Image analysis of bulk grain samples using neural networks,” Canadian Biosystems Engineering, 2004.
    [28] O. Person, “Understanding emotional response to product form –studying the relationship between emotion profile and product format,” Department of Product Design, Norwegian University of Science and Technology, 2003.
    [29] P. Parada, J. Ruiz-del-Solar, M. Köppen and W. Plagges, “Interactive texture synthesis,” Proc. of the 11th Int. Conf. on Image Analysis and Processing - ICIAP 2001, pp. 434-439, Sept. 26-28, Palermo, Italy, 2001.
    [30] P. Parada and J. Ruiz-del-Solar, “Texture synthesis using image pyramids and self-organizing maps,” Proc. of the 11th Int. Conf. on Image Analysis and Processing - ICIAP 2001, pp. 244-249, Sept. 26-28, Palermo, Italy, 2001.
    [31] Peter J. Bentley and Jonathan P. Wakefield, “Conceptual Evolutionary Design by a Genetic Algorithm,” Engineering Design and Automation 2, 1996.
    [32] R. Brunelli and O. Mich, “Histograms analysis for image retrieval,” Pattern Recognition, Vol.34, pp.1625-1637, 2001.
    [33] R. M. Haralick, K. Shanmugam and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.SMC-3, No. 6, November 1973.
    [34] R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of The IEEE, Vol.67, No. 5, MAY 1979.
    [35] S. Sharma, “Applied multivariate techniques,” New York: John Wiley, 1996.
    [36] Shuanghua Cao and Jiacong Cao, “Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis,” APPLIED THERMAL ENGINEERING, Vol. 25, Num. 2-3, 2005.

    [37] T. Chan, and L. H. Chen, “Fast mapping algorithm for histogram to binary set conversion,” Pattern Recognition Letter, Vol.21, pp.899-906, 2000.
    [38] T. Gevers, “Robust histogram construction from color invariants,” The Eighth IEEE International Conference on Computer Vision, Vol.1, pp.615 –620, 2001.
    [39] T. Ojala, M. Pietik¨ainen, D. Harwood, “A comparative study of texture measures with classification based on feature distributions,” Pattern Recognition 29, pp. 51–59, 1996.
    [40] T. Ojala, M. Pietik¨ainen, T. M¨aenp¨a¨a, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24, pp. 971–987, 2002.
    [41] Venus W. Samawi, “TEXTURE CLASSIFICATION USING ACON BASED NEURAL NETWORKS,” 14th International Conference on Computer Theory Applications, 2004.
    [42] W. Lu, and Y. P. Tan, “A color histogram based people tracking system,” The IEEE International Symposium on Circuits and Systems, Vol.2, pp. 137-140, 2001.
    [43] Will Archer Arentz and Bjorn Olstad, “Classifying offensive sites based on image content,” Computer Vision and Image Understanding 94, pp. 295–310, 2004.
    [44] Ya-Chun Cheng, Shu-Yuan Chen, “Image classification using color, texture and regions,” Image and Vision Computing 21, pp. 759–776, 2003.

    中文部份
    [45] 王月芳,應用類神經網路於服裝布料之電腦輔助設計,國立成功大學工業設計研究所碩士論文,2004。
    [46] 李宏傑,基於紋理與色彩特徵的影像檢索系統之研究,淡江大學電機工程學系電子電路組碩士論文,2001。
    [47] 林東賦,應用影像處理技術與類神經網路理論於非織物瑕疵辨識,國立台灣科技大學纖維及高分子工程技術研究所碩士論文,2001。
    [48] 吳子謙,使用局部色彩特徵之影像檢索方法,國立中正大學資訊工程研究所碩士論文,2002。
    [49] 吳昭賢,以型態單元位基底的彩色影像擷取法,國立交通大學資訊科學研究所碩士論文,2003。
    [50] 長町三生,感性工學和方法論,感性工學委員會,日本,1997。
    [51] 郁碧娟,布料規格語流行語彙之關聯性探討,輔仁大學織品服裝研究所碩士論文,2003。
    [52] 陳正昌、程炳林、陳新豐、劉子鍵合著,多變量分析方法-統計軟體應用,五南圖書出版公司,2003。
    [53] 陳榮靜,以顏色複雜度與顏色空間分佈特徵為基礎的影像查詢系統,朝陽科技大學資訊管理系碩士論文,2003。
    [54] 陳幹旻,以特徵分佈為基礎之彩色紋理影像切割,元智大學資訊工程研究所碩士論文,1999。
    [55] 梅宜冬,從感性觀點探討數位產品造型意向特質~以數位攝影機為例,大葉大學設計研究所碩士論文,2004。
    [56] 連國珍,數位影像處理,儒林圖書公司,台北市,2000。
    [57] 張真誠、黃國峰及陳同孝編著,電子影像技術,旗標出版社,台北,2003。
    [58] 黃崇彬,日本感性工學發展近況與其在遠隔控制介面設計上應用的可能性,2002。
    [59] 葉怡成,類神經網路模式應用與實作,儒林圖書公司,2003。
    [60] 賀育民,高爾夫揮桿動作電腦化學習系統雛形之建構,義守大學工業工程與管理學系碩士論文,2003。

    [61] 蔡淑娟,類神經遺傳演算法應用於產品配色系統之建立,國立成功大學工業設計研究所碩士論文,2003。
    [62] 蔡承諭,視、觸覺之形態與材質對產品意象影響研究,雲林科技大學工業設計研究所碩士論文,2004。
    [63] 鄭家杰,影像搜尋系統輔助配色之研究-以布料影像為例,國立成功大學工業設計研究所碩士論文,2003。
    [64] 沈士涼譯,「KJ法應用實務」,日本能率協會編著,清華管理科學圖書公司,1986。

    下載圖示 校內:2006-08-25公開
    校外:2006-08-25公開
    QR CODE