| 研究生: |
許瑋壬 Hsu, Wei-Ren |
|---|---|
| 論文名稱: |
微電子用低溫環化正型感光性聚苯噁唑聚合物之研究 Low Temperature Curable Positive Photosensitive Polybenzoxazole for Microelectronic Applications |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 感光型聚苯噁唑 、聚羥醯胺 、低溫環化 、熱酸 |
| 外文關鍵詞: | Photosensitive polybenzoxazole, Poly(hydroxy amie), Low temperature cyclization, Thermoacid generator |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一新穎的正型鹼性水溶液顯影的耐高溫感光性材料是由Diazonaphthoquinone(DNQ)改質之聚羥醯胺(Poly(hydroxy amide) ; PHA)、溶解抑制劑(Dissolution inhibitor;DI)以及熱酸(Thermoacid generator;TAG)所組成。
本研究合成方法採低溫聚合反應,藉由2,2-bis(3-amino-4-hydroxy phenol)hexafiouoropropane(BisAPAF)、isophthaloyl chloride(IC)和4,4’-oxydibenzoyl chloride(ODC)三種單體共聚形成聚苯噁唑(Polybenzoxazole ; PBO)之前驅物聚羥醯胺(PHA),將其於350 ℃ 高溫環化後可形成聚苯噁唑(PBO)作為IC 晶片保護膜。
研究發現添加適量含磺酸酯(Sulfonate)官能基的熱酸可以將聚羥醯胺在較低的溫度(250 ℃)下進行脫水閉環反應形成聚苯噁唑,有別於一般聚羥醯胺需在高溫 350 ℃ 環化。環化後的聚苯噁唑仍具有相當高的玻璃轉移溫度以及良好的耐熱性。
利用聚羥醯胺與 1,2-naphthoquinonediazide-5-sulfonyl chloride(DNQ-5)感光物質進行反應,藉由部份 OH 基被保護之作用下製成可由鹼性水溶液顯影的正型感光材料。此感光材料在 2.38 wt% 四甲基氫氧化銨(TMAH)的顯影液中,其未曝光膜的溶解速率與改質前相比有明顯地降低,而曝光膜仍具有極高的溶解速率,故此感光材料具顯著的低未曝光部份的膜損失(dark film loss)而可容易形成厚膜光阻。
利用部份 OH 基被保護的聚羥醯胺,添加感光材料 PIC-3 做為溶解抑制劑以及搭配適量磺酸酯 Methyl p-toluene sulfonate(MPTS)所製成的感光材料,可以製成高解析度、低未曝光膜損失的正型鹼性水溶液顯影的耐高溫感光高分子材料。在 2.38 wt% 四甲基氫氧化銨(TMAH)的顯影液中測得光敏感度為 245 mJ/cm2,對比值達 1.96,未曝光膜損失為 1.1 %。顯影後的聚苯噁唑前驅物圖案在 250 ℃ 下環化處理 20 分鐘後即可轉化為聚苯噁唑(PBO)。以光學顯微鏡(OM)和掃瞄式電子顯微鏡(SEM)觀察顯影後的圖案,解析度可達 5 μm,證實本研究所製備的正型光阻材料確可應用於紫外光光源的微影製程。
A low temperature curable positive-type aqueous base developable photosensitive polybenzoxazole (PSPBO) precursors composition was developed based on a partially diazonaphthoquinone (DNQ) capped poly(hydroxy amide) (PHA), a dissolution inhibitor (DI) and a thermoacid generator (TAG).
PHA was synthesized from low temperature polymerization of 2,2-bis(3-amino-4-hydroxy phenol)hexafiouoropropane (BisAPAF), isophthaloyl chloride (IC) and 4,4’-oxydibenzoyl chloride (ODC). When thermal cyclization, PHA can convert to PBO as an IC chip protection layer.
Recently, the thermoacid containing sulfonate group was found to be a catalyst for low temperature cyclization (250 ℃) of PHA, which is significantly lower than the non-catalyst cyclization at 350 ℃. The low temperature cured PBO still has a high glass transition temperature and good thermal stability.
The DNQ capped PHA was prepared from the reaction of PHA and 1,2-naphthoquinonediazide-5-sulfonyl chloride (DNQ-5), which caused some phenol hydroxyl groups of PHA were protected. It can be used as a positive-type aqueous base developable photosensitive resist. The DNQ capped PHA showed low dissolution rate before exposure in developer. After exposure, the dissolution rate can be enhanced due to the conversion of DNQ to indene carboxylic acid. Because of the characteristic of low dark film loss, the DNQ capped PHA can form thick film resist.
The PSPBO consisting of DNQ capped PHA, PIC-3, methyl p-toluene sulfonate exhibited a sensitivity of 245 mJ/cm2, a contrast of 1.96 and a dark film loss of 1.1 % developed in 2.38 wt% Tetramethylammonium hydroxide. A clear positive image of PBO pattern obtained after cured at 250 ℃ with 5 μm resolution. Optical microscopy (OM) and scanning electron microscopy (SEM) was used to observe the resulted patterns.
1. M. E. Mills, et al., Microelectron. Eng., 33, 327 (1997).
2. A. J. G. Strandjord, et al., Proc. 47th Electron. Comp. Technol. Conf., 1260 , (1997).
3. P. E. Ganrou, et al., IEEE Trans. Adv. Packag., 22, 487 (1999).
4. G. Maier, S. Banerjee, J. Haußmann, R. Sezi, High Perform. Polym., 13, S107 (2001).
5. S. L. Hsu and W. C. Chen, Polymer, 43, 6743 (2002).
6. T. Hirano, K. Yamamoto, K. Imamura, 15th Biennial University/Government/Industry Microelectronics Symposium, 246 (2003).
7. H. S. Noh, et al., J. Micromech. Microengr., 13, 631 (2004).
8. H. Matsutani, et al., J. Photopolym. Sci. Technol., 18, 327 (2005).
9. J. Yota, et al., IEEE Trans. Semicond. Manuf., 20, 323 (2007).
10. J. Yota, J. Electrochem. Soc., 156, G173 (2009).
11. M. Töpper, T. Fischer, T. Baumgartner, H. Reichl, 2010 Electronic Components and Technology Conference, 769 (2010).
12. B. Wunderle, E. Dermitzaki, O. Holck, J. Bauer, H. Walter, Q. Shaik, K. Ratzke, F. Fauple, B. Michel, H. Reichl., Microelectron. Reliab., 50, 900 (2010).
13. K. Fukukawa, M. Ueda, Polym. J., 40, 281(2008).
14. H. Ahne, E. Kuhn, and R. Rubner , US patent 4339521 (1982).
15. J. W. McPherson, C. F. J. Dunn, Vac. Sci. Technol., 5, 1321 (1987).
16. F. G. Yost, Scripta Mat., 23, 1323 (1989).
17. K. C. Brinker, D.D. Cameron, and I. M. Robinson, US patent 2904537 (1959).
18. J. E. Wolfe and F. E. Arnold, Macromolecules, 14, 909 (1981) .
19. M. Dotrong, M. H. Dotrong, R. C. Evers, G. J. Moore, Polym Prepr Div Polym Chem Am Chem Soc, 31, 675 (1990).
20. L. R. Denny, R. C. Evers, B. A. Reinhardt, M. R. Unroe, M. Dotrong, M. D. Houtz, Natl SAMPE Tech Conf, 22, 186 (1990).
21. M. D. Houtz, J. M. Lavoie, D. L. Pedrick, E. G. Jones, M. R. Unroe, and L. S. Tan, Polym. Prepr., 35, 437 (1994).
22. W. D. Joseph, J. C. Abed, T. H. Yoon, and J. E. McGrath, Polymer, 35, 551 (1994).
23. T. Yamaoka, N. Nakajima, K. Koseki, J. Polym. Sci.: Part A, 28, 2517 (1990).
24. A. Tokoh, Photosensitive Polymers, Kansai Research Institute, 89 (1999).
25. E. W. Choe, S. N. Kim, Macromolecules, 14, 920 (1981).
26. D. B. Roitman and R. A. Wessling et al, J.Polym.Sci.:Part B, 32, 1157 (1994).
27. J. A. Newell and D. K. Rogers et al, Carbon, 32, 651 (1994).
28. T. Kitagawa, H. Murase, and K. Yabuki, J.Polym.Sci.:Part B, 36, 39 (1998).
29. 陳琬琪, “正型鹼性水溶液顯影耐高溫感光性聚苯噁唑之研究”, 成功大學碩士論文 (2001).
30. 林佳儀, “正型水性顯影聚苯噁唑/黏土奈米感光複合材料之研究”, 成功大學碩士論文 (2003).
31. 洪木清,電子月刊,第11 卷,第7 期,第174 頁 (2005).
32. 劉瑞祥,感光性高分子,復文書局 (1987).
33. R. E. Kerwin and M. R. Goldrick, Polym.Eng.Sci., 11, 426 (1971).
34. R. Rubener, H. Ahne, E. Kühn and G. Kolodxiej, Photogr.Sci.Eng., 23, 303 (1979).
35. R. Rubner, Adv. Mater., 2, 452 (1990).
36. R. Rubner, J. Photopolym. Sci. Technol., 17, 685 (2004).
37. T. Ogura, T. Higashihara, and M. Ueda, Eur. Polym. J., 46, 1576 (2010).
38. K. Mizoguchi, T. Higashihara, and M. Ueda, Macromolecules, 42,3780 (2009).
39. T. Ogura, M. Ueda, J. Polym. Sci.: Part A, 45, 661 (2007).
40. M. K. Ghosh and K. L. Mittal, ”Polyimides, Fundamentals and Applications”, Marcel Dekker, New York (1996).
41. 金進興,材料與社會,第 6 卷,第 5 期,第 80 頁 (1991).
42. http://www.electroiq.com
43. http://www.asahi-kasei.co.jp
44. F. Toyokawa, Y. Shibasaki, M. Ueda, Polym. J., 37, 517 (2005).
45. T. K. Kim, K. Y. Choi, K. S. Lee, D. W. Park, and M. Y. Jin, Polym. Bull., 44, 55 (2000).
46. K. Sato, N. Sugimoto, US patent 7615324 (2009).
47. K. Fukukawa, M. Ueda, Macromolecules, 39, 2100 (2006).
48. K. Fukukawa, M. Ueda, Polym. J., 38, 405 (2006).
49. T. Ogura, K. Yamaguchi, Y. Shibasaki, M. Ueda, Polym. J., 39, 245 (2007).
50. F. Toyokawa, K. Fukukawa, Y. Shibasaki, and M. Ueda, Chem. Lett., 33, 1342 (2004).
51. 蕭宏, ”半導體製程技術導論”, 歐亞書局有限公司 (2001).
52. 龍文安, ”積體電路微影製程”, 高立出版社 (1998).
53. 莊達人, ”VLSI 製造技術”, 高立出版社 (1996).
54. 黃炳照,化工技術,第7 卷,第9 期,第140 頁 (1991).
55. M. Quirk, J. Serda, “Semiconductor Manufacturing Technology”, , Prentice Hall, New Jersey (2001).
56. 李世鴻,積體電路微影製程,五南書局 (1998).
57. 李晏成,化工技術,第14 卷,第9 期,第134 頁 (2006).
58. 楊金成,電子月刊,第14 卷,第4 期,第116 頁 (2008).
59. H. Ito and C. G. Wilson, ACS Symp. Ser., 11, 242 (1983).
60. J. F. Rabek, “Experimental Methods in Polymer Chemistry-Physical Principles and applications”, John Wiley and Sons, New York (1980).
61. 汪建民,材料分析,中國材料科學學會 (1998).
62. R. V. Tanikella, T. Sung, S. A. Bidstrup-Allen, and P. A. Kohl, IEEE transactions on components and packaging technologies, 29, 1521 (2006).
63. G. L. Tullos, J. M. Powers, S. J. Jeskey, L. J. Mathias, Macromolecules, 32, 3598 (1999).
64. T.K. Kim, K.Y. Choi, K.S. Lee, D.W. Park, M.Y. Jin, Polym. Bull., 44, 55 (2000).
65. C.N.R. Rao, “Chemical Applications of Infrared Spectroscopy”, Acdemic Press, New York (1963).
66. 劉雁欣, “高溫質子交換膜燃料電池用之含氟聚苯咪唑/磺酸化二氧化矽奈米複合材料合成與性質之研究”, 成功大學碩士論文 (2009).
67. T. Miyazaki, M. Hasegawa, High Perform. Polym., 19, 243 (2007).
68. T. Miyazaki, M. Hasegawa, High Perform. Polym., 21, 219 (2009).
69. C. L. Henderson, S. A. Scheer, P. C. Tsiartas, B. M. Rathsack, J. P. Sagan, R. R. Damme1, A. Erdmann, C. G. Wilison, Proc SPIE Int Soc Opt Eng, 3333, 256 (1998).
70. L.F. Thompson, C.G. Wilson, M. J. Bowden, Ed., “In Introduction to microlithography;2Ed.”, ACS, Washington, D.C. (1994).
71. H. Zhou, Y. Zou, and Y. Song, J. Appl. Polym. Sci., 117, 2360 (2010) .
72. T. Omote, H. Mochizuki, K. Koseki and T.Yamaoka, Macromolecules, 23, 4796 (1990).
73. 李柏毅, ”正型鹼性水溶液顯影感光性聚醯亞胺材料之研究”, 成功大學碩士論文 (2000).
校內:2021-12-31公開