| 研究生: |
簡豪江 Chien, Hao-chiang |
|---|---|
| 論文名稱: |
山崩改變台灣南部季風林落葉層的甲蟎群落組成 Landslide alters oribatid mite communities in litter layers of a monsoon forest in southern Taiwan |
| 指導教授: |
侯平君
Hou, Ping-Chun Lucy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 山崩 、土壤 、落葉層 、甲瞞 、群落 、南仁山 |
| 外文關鍵詞: | communities, Nanjenshan, litter layer, oribatid mites, landslide, soil |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土壤節肢動物是熱帶地區落葉分解重要的調控因子之ㄧ,而甲蟎通常是落葉層節肢動物中數量最多的一群。牠們體型微小、行動力弱且繁殖速度緩慢,故對於外來的干擾相當敏感,可做為環境變動的指標。山崩(landslide)為大量降水或地震造成的土石崩塌,為台灣森林常見的干擾。本研究於2003年在南仁山森林探討山崩對落葉層甲蟎密度及群落組成的影響。每兩個月從三個樣區採集兩年內曾經山崩及未曾山崩林地,落葉層中之甲蟎進行分析。結果共發現49科87個形態種;平均密度為每平方公尺1766.8隻,成體與幼體甲蟎的密度在有無山崩干擾的林地間並無顯著差異;但甲蟎群落結構在有無山崩干擾的林地間則有顯著的差別,且會隨時間變動。一種屬於孤雌生殖分類群的甲蟎(Trhypochthoniidae sp.)的幼體為山崩干擾林地的優勢種,其密度遠高於未受干擾林地。上述結果顯示落葉層甲蟎的密度不受山崩干擾影響或是干擾後可以迅速恢復,但甲蟎群落結構則受山崩干擾影響無法在短期內恢復;此外也支持孤雌生殖的甲蟎密度在干擾地區較未受干擾地區多的假說。
Soil arthropods are important in controlling the rate of litter decomposition in tropical forests. Oribatid mites are often the most abundant group among litter arthropods. The low mobility and low fecundity indicate that they may be sensitive to disturbances and are ideal for detecting environmental changes. Landslide is a frequent disturbance to tropical forests as a result of heavy rain fall. In this study, effects of landslide disturbance on density and composition of the oribatid mites were investigated in Nanjenshan forest. Oribatid mites collected bimonthly in 2003 from litter layers of the undisturbed and landslide forests were analyzed. A total of 87 morphospecies of oribatid mites across 49 families were identified from the litter samples. Mean density of oribatid mites was 1766.8 individuals / m2 and did not differ significantly between the undisturbed and landslide forests. However, composition of the oribatid mites varied significantly between the undisturbed and landslide forests and time within each site. Juveniles of Trhypochthoniidae sp. 1 were more abundant in the landslide forests than the undisturbed forests. These results suggest that landslide disturbance does not change oribatid density but alter its composition in litter layer and support the hypothesis that parthenogenetic oribatid mites are more abundant in the disturbed area than in the undisturbed area.
Andre´, H. M., X. Ducarme, and P. Lebrun. 2002. Soil biodiversity: myth, reality or conning? Oikos 96: 3-24.
Aoki, J. and G. Kuriki. 1980. Soil mites communities in the poorest environment under the roadside trees. In D. L. Dindal (ed.), Soil Biology as Related to Land Use Pratices, pp. 226-234. Office of Pesticide and Toxic Substances, EPA, Washington, D.C.
Aoki, J. 1990. New oribatid mites (Acai: Oribatida) from Taiwan. I. Proc. Japan. Soc. Syst. Zool. 41: 15-18.
Aoki, J. 1991. Oribatid mites of high altitude forests of Taiwan I. Mt. Pei-ta-wu Shan. Acta Arachinologica Sinica 40: 75-84.
Fujikawa, T. M., M. Fujita, and J. Aoki. 1993. Checklist of oribatid mites of Japan (Acari: Oribatida). Journal of the Acarological Society of Japan. 2(1): 1-123. (In Japanese)
Aoki, J. 1995. Oribatid mites of high altitude forests of Taiwan II. Mt. Nan-hu-ta Shan. Special Bulletin of Japanese Society of Coleopterology. 4: 123-130.
Fujikawa, T., M. Fujita and J. Aoki. 1993. Checklist of oribatid mites of Japan (Acari: Oribatida)(In Japanese). Journal of Acarological Society of Japan. 2: Suppl.1
Badejo, M. A. and O. A. Philipe. 2006. Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest. Experimental and Applied Acarology 40: 145-156.
Balogh, J. and P. Balogh. 1992. The oribatid mites genera of the world (Vol. 1, 2). Hungarian National Museum Press, Budapest.
Beard, J. 1991. Woodland soil yields a multitude of insects. New Scientist 131 (1784): 18.
Bell, G. 1982. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley (California).
Berthet, P. 1964. Field study of the mobility of Oribatei (Acari) using radioactive tagging. The Journal of Animal Ecology 33(3): 443-449.
Chiu, M.-H. 2005. Using high resolution satellite imagery to study the stand structure of Nanjenshan secondary forest. Master thesis, National Pintung University of Science and Technology, Napu, Pingtung, Taiwan.
Chu, Y. I. and J. Aoki. 1997. Fauna of oribatid mite at Fu-shan forest Litter and humus layer. Chinese Journal of Entomology 17(3): 172-178.
Clarke, K. R. and R. M. Warwick. 2001. Changes in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth, UK.
Giller, P. S. 1996. The diversity of soil communities, ‘the poor man's tropical forest’. Biodiversity and Conservation 5: 135-168.
Heneghan, L., D. C. Coleman, X. Zou, A. A. Crossley, Jr., and B. L. Haines. 1999. Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80(6): 1873-1882.
Hou, P.-C. L., X. Zou, C.-Y. Huang, H.-C. Chien 2005. Plant litter decomposition influenced by soil animals and disturbance in a subtropical rainforest of Taiwan. Pedobiologia 49: 539-547.
Ito, M. 1980. Trampling impact on soil fauna at the summit of Mt. Jimba. Edaphologia 21: 5-15.
John, M. G. St., G. Bagatto, V. Behan-Pelletier, E. E. Lindquist, J. D. Shorthouse, and I. M. Smith. 2002. Mite (Acari) colonization of vegetated mine tailings near Sudbury, Ontario, Canada. Plant and Soil 245: 295-305.
Kaneko, N. 1985. A comparison of oribatid mite communities in two different soil types in a cool temperate forest in Japan. Pedobiologia. 28(4): 255-264.
Larsen, M. C., A. J. Torres-Sanchez, and I. M. Concepcion. 1999. Slopewash, surface runoff and fine-litter transport in forest and landslide scars in Humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico. Earth Surface Processes and Landforms 24: 481-502.
Lee, K.-Y. and C.-L. Liao. 1996. Evaluation of soil nutrition and nutrition cycle. In Global change: Nanjenshan forest ecosystem studies, National Science Council Research Project Report. Division of Life Science, R.O.C. (In Chinese with English abstract)
Li, Y., H. Ruan, X. Zou, and R. W. Myster. 2005. Response of major soil decomposers to landslide disturbance in a Puerto Rican rainforest. Soil Science 170(3): 202-211.
Lindberg, N. and J. Bengtsson. 2005. Population responses of oribatid mites and collembolans after drought. Applied Soil Ecology 28: 163-174.
Lindberg, N. and J. Bengtsson. 2006. Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114: 494-506.
Luxton, M. 1981a. Studies in the oribatid mites of a Danish beech wood soil IV. Developmental biology. Pedobiologia 21: 312-340
Luxton, M. 1981b. Studies in the oribatid mites of a Danish beech wood soil VI. Seasonal population changes. Pedobiologia 21: 387-409.
Maraun, M. and S. Scheu. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23: 374-383
Marain, M., J. Alphei, M. Bonkowski, R. Buryn, S. Migge, M. Peter, M. Schaefer, and S. Scheu. 1999. Middens of the earthworm Lumbricus terrestris (Lumbricidae): microhabitats for micro- and mesofauna in forest soil. Pedobiologia 43: 276-287.
Maraun, M., J. A. Salamon, K. Schneider, M. Schaefer, and S. Scheu. 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus syvatica): effects of mechanical perturbations. Soil Biology and Biochemistry 35: 1387-1394.
McLean, M. A., and D. Parkinson. 1998. Impacts of the epigeic earthworm Dendrobaena octaedra on oribatid mite community diversity and microarthropod abundances in pine forest floor: a mesocosm study. Applied Soil Ecology 7: 125-136.
McLean, M. A. and D. Parkinson. 2000. Introduction of the epigeic earthworm Dendrobaena octaedra changes the oribatid community and microarthropod abundances in a pine forest. Soil Biology and Biochemistry 32:1671-1681.
Menhinick, E. F. 1967. Structure, stability, and energy flow in plants and arthropods in a Sericaea Lespedeza stand. Ecological Monographs 37(3): 255-272.
Norton, R. A. and S. C. Palmer. 1991. The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. In R. Schuster and P. W. Murphy (Eds.), The Acari: Reproduction, Development and Life-History Strategies, pp. 107-136. Chapman and Hall, London.
Norton, R. A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In M. Houck (eds), Mites:? Ecological and evolutionary analyses of life-history patterns, pp. 99-135. Chapman & Hall, New york.
Osler, G. H. R., A. Korycinska, and L. Cole. 2006. Differences in litter mass change mite assemblage structure on a deciduous forest floor. Ecography 29(6): 811-818.
Schatz, H. 2002. Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758-2001)-eine analyse. Abhandlungen und Berochte des Naturkundemuseums Görlitz 74: 37-45.
Scheu, S. and E. Schulz. 1996. Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and Conservation 5: 235-250.
Scheu, S., D. Albers, J. Alphei, R. Buryn, U. Klages, S. Migge, C. Platner, and J. Salamon. 2003. The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos 101: 225-238.
Schneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking, and M. Maraun. 2004. Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36: 1769-1774.
Setälä, H. 2002. Sensitivity of ecosystem functioning to changes in trophic structure functional group composition and species diversity in belowground food webs. Ecological Research 17: 207-215.
Smith, R. L. and T. M. Smith. 1998. Elements of ecology. Longman, Menlo Park,
USA.
Sun, I.-F., C.-F. Hsieh, and S. P. Hubbel. 1998. The structure and species composition of a subtropical monsoon forest in southern Taiwan on a steep wind-stress gradient. In I. M. Turner, C. H. Diong, S. S. L. Lim. and P. K. L. Ng. (eds.), Biodiversity and the Dynamics of Ecosystems. DIWPA series Volume 1: 147-169.
Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications. Oxford, UK..
Tseng, Y. H. 1982. Taxonomical study of oribatid mites from Taiwan (Acairina: Astigmata) (I). Chinese Journal of Entomology 2(1): 53-106.
Tseng, Y. H. 1984. Taxonomical study of oribatid mites from Taiwan (Acairina: Astigmata) (II). Chinese Journal of Entomology 4(1): 27-74.
Usher, M. B., P. R. Davis, J. R. W. Harris, and B. C. Longstaff. 1979. A profusion of species? Approaches towards understanding the dynamics of the populations of the microarthropods in decomposer communities. In R. M. Anderson, B. D. Turner, and L. R. Taylor (eds.), Population Dynamics, pp. 359-384. Blackwell Scientific Publications, Oxford, UK.
Walker, L. R., D. J. Zarin, N. Fetcher, R. W. Myster, and A. H. Johnson. 1996. Ecosystem development and plant succession on landslides in the Caribbean. Biotropica 28(4): 566-576.
Wall, D. H., R. D. Bardgett, A. P. Covich, and P. V. R. Snelgrove. 2004. Understanding the functions of biodiversity in soils and sediments will enhance global ecosystem sustain-ability and social well-being. In D. H. Wall (ed), Sustaining biodiversity and ecosystem service in soils and sediments, pp. 249-254. Island Press, Washington, D.C., USA.
Wallwork, J. A. 1983. Oribatids in forest ecosystems. Annual Review of Entomology 28: 109-130.
Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.
White, T. C. R. 1978. The importance of relative shortage of food in animal ecology. Oecologia 33: 71-86.
Williams, G. C., 1975. Sex and Evolution. Princeton University Press, Princeton.