簡易檢索 / 詳目顯示

研究生: 李胤澂
Lee, Yin-Cheng
論文名稱: 基於電磁誘發透明的 Λ 型、V 型和級聯型躍遷的慢光效應研究
Study on Slow Light Effect Based on Electromagnetically Induced Transparency in Λ-, V-, and Cascade-Type Transitions
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 電磁誘發透明慢光效應量子轉頻
外文關鍵詞: electromagnetically induced transparency, Slow light effect, Quantum frequency conversion
相關次數: 點閱:99下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們在冷原子系統中研究了由電磁誘發透明引起的慢光效應。我們對三種不同電磁誘發透明系統(Λ型、V型和級聯型配置)中光脈衝的減速進行了比較,實驗觀察結果與理論預測相符。我們的研究結果促進了我們對不同電磁誘發透明配置下慢光現象的理解。

    In this thesis, we investigate the slow-light effect induced by electromagnetically induced transparency (EIT) in a cold atomic system. We compare the deceleration of light pulses among three distinct transparent systems (Λ-type, V-type, and cascade-type EIT configurations), the experimental observations are consistent with theoretical pre dictions. Our research findings contribute to our understanding of slow-light phenomena in different EIT configurations.

    摘要 i 英文延伸摘要 ii 誌謝 vii 目錄 viii 圖片 x 第 1 章. 緒論 1 1.1 簡介 1 1.2 動機 1 第 2 章. 基本理論 2 2.1 光學布拉赫方程 2 2.2 馬克士威-薛丁格方程 3 2.3 二能階 5 2.4 電磁誘發透明 11 2.4.1 Λ-type 11 2.4.2 cascade-type 16 2.4.3 V type 24 2.5 慢光效應比較 30 第 3 章. 實驗系統 31 3.1 雷射穩頻系統31 3.2 冷原子 32 3.2.1 磁光陷阱 32 3.2.2 暗區自發力磁光陷阱 35 3.3 Λ-Type 電磁誘發透明 35 3.3.1 能階 35 3.3.2 光路、時序 37 3.4 cascade-Type 電磁誘發透明 38 3.4.1 能階 38 3.4.2 光路、時序 40 3.5 V-Type 電磁誘發透明 43 3.5.1 能階 43 3.5.2 光路、時序 44 第 4 章. 結果與討論 47 4.1 電磁誘發透明 47 4.1.1 Λ-Type 電磁誘發透明 47 4.1.2 cascade-Type 電磁誘發透明 53 4.1.3 V-Type 電磁誘發透明 59 第 5 章. 結論與未來展望 62 參考文獻 63

    [1] M. A. Nielsen, I. L. Chuang. ”Quantum Computation and Quantum Information: 10th Anniversary Edition.” (2010).
    [2] C. H. Bennett and G. Brassard. ”Quantum cryptography: Public key distribution and coin tossing.” International Conference on Computers, Systems and Signal Processing, 175, 8 (1984).
    [3] N. Gisin, R. Thew. ”Quantum communication. Nature Photon.” Optik, 6, 497-505 (2017).
    [4] G. J. Milburn1. ”Photons as qubits.” Phys. Scr.2009, 014003 (2009).
    [5] P. Kumar. ”Quantum frequency conversion.” Opt. Lett. 15, 1476-1478 (1990).
    [6] C. Y. Cheng, Z. Y. Liu, P. S. Hu, T. N. Wang, C. Y. Chien, J. K. Lin, J. Y. Juo, J. S. Shiu, I. A. Yu, Y. C. Chen, and Y. F. Chen. ”Efficient frequency conversion based on resonant four-wave mixing.” Optics Letters , Vol. 46 3, 681-684 (2021).
    [7] S. E. Harris. ”Electromagnetically induced transparency.” Physics Today 50 (7), 36–42 (1997).
    [8] S. E. Harris. ”Nonlinear optical processes using electromagnetically induced trans parency.” Phys. Rev. L. 64, 1107 , Vol. 64, (1990).
    [9] M. Yan, E. G. Rickey, and Y. Zhu. ”Electromagnetically induced transparency in cold rubidium atoms.” J. Opt. Soc. Am, B 18, 1057-1062 (2001).
    [10] Y. Q. Li, M. Xiao. ”Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms.” Phys. Rev. A. 51, R2703(R) (1995).
    [11] H. R. Noh and H. S. Moon. ”Transmittance signal in real ladder-type atoms.” Phys. Rev. A 85, 033817 (2012).
    [12] A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra. ”Elec tromagnetically induced transparency in an open V-type molecular system.” Phys. Rev. A 83, 063419, (2011).
    [13] C. R. Higgins, I. G. Hughes. ”Electromagnetically induced transparency in a V-system with 87Rb vapor in the hyperfine Paschen-Back regime.” arXiv, 2104.10613 , (2021).
    [14] L. J. Yang, D. Q. Lu and M. Zhao. ”Phase Control of Electromagnetically Induced Transparency in a Cyclic Three-Level System.” 2010 Symposium on Photonics and Optoelectronics, 1-4 (2010).
    [15] H. Schmidt, R. J. Ram. ”All-optical wavelength converter and switch based on electro magnetically induced transparency.” Appl. Phys. Lett 76, 3173-3175 (2000).
    [16] T. Krauss. ”Why do we need slow light?.” Nature Photon 2, 448-450 (2008).
    [17] L. Ma, O. Slattery and X. Tang . ”Optical quantum memory based on electromagneti cally induced transparency.” Journal of Optics 19, 043001 (2017).
    [18] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbel, D. N. Matsukevich, T. A. B. Kennedy A. Kuzmich . ”Long-lived quantum memory. Nature Phys.” Nature Phys 5, 100–104 (2009).
    [19] D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, G. C. Guo. ”Storage and retrieval of a light in telecomband in a cold atomic ensemble.” arXiv:1210.3963 (2012).
    [20] T. N. Wang. ”Quasi-phasematching slow light propagation in efficient four-wave mix ing media.” Master Thesis, NCKU (2020).
    [21] C. Y. Cheng. ”Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics.” Doctor Thesis, NCKU, (2021).
    [22] C. Y. Cheng, and J. J. Lee, and Z. Y. Liu, and J. S. Shiu, and Y. F. Chen. ”Quantum frequency conversion based on resonant four-wave mixing.” Phys. Rev. A, 103:023711, (2021).
    [23] A.G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich T. A. B. Kennedy. ”A quantum memory with telecom-wavelength conversion.” Nature Physics, vol. 6, 894-899 (2010).
    [24] C. H. Chen. ”Efficient Telecom Photon Conversion Based on Double-Cacade Transi tions.” Master Thesis, NCKU (2021).
    [25] D. X. Khoa, H. M. Dong, L. V. Doai, N. H. Bang. ”Propagation of laser pulse in a three level cascade inhomogeneously broadened medium under electromagnetically induced transparency conditions.” Optik, 131, 497-505 (2017).
    [26] J. T. Xiao. ”High-efficiency backward four-wave mixing by quantum interference.”Master Thesis, NCKU (2017).

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE