簡易檢索 / 詳目顯示

研究生: 莊泉輝
Chuang, Chiung-Hui
論文名稱: Local-view Oriented Ontology Integration
Local-view Oriented Ontology Integration
指導教授: 王惠嘉
Wang, Hei-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 本體論本體論整合知識共享語意相似度計算
外文關鍵詞: similarity comparison, ontology integration, knowledge sharing, ontology
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   網際網路的盛行,使得世界各地的人們隨時都能存取大量資訊,然而一般獲取資訊的方法均以特定關鍵字為基礎,忽略其相關的意涵與潛在的脈絡關係,使資訊的探索只侷限於特定字義的範圍。所以遂有本體論(Ontology)的產生,其目的在建立一個正規、共享、具重用性的知識表現架構,藉知識個體間的語意關聯,強化知識主體的完整性與溝通性。
      近年來,隨著本體論概念廣被學界與業界應用,亦開始呈現類似網際網路資訊的問題,即同一領域,甚或是企業之中,均存有多個不同本體論同時運作,資訊與系統的整合已成為迫切要務之一。於是學者們紛紛提出各種本體論的整合方法,範疇遍及系統、架構與流程等構面。在這些方法之中,有以單一本體論為整合結果,亦有建立由上而下完整的整合流程,然而這些方式與架構仍有著一些缺點需要改進,諸如原有資源喪失獨立維護性,或是實際執行過度依賴協商妥協,導致整合效益不彰。
      因此,為了避免上述整合本體論可能產生的後遺症,本研究參考過去相關文獻, 擬改良Ontology Clustering的整合架構,融合語法語意相似度測量方法,增加概念比較時的準確性以避免資訊的流失,並提供本地端導向的搜尋方式,期能使各社群依其興趣和觀點獲得所需的知識,擴大知識共享的效益;亦計畫於特定領域中,此本體論整合架構能成為社群共同發展領域知識的管道之一。

     In recent years, with ontology prevailing over educational circles and industry application, like internet, one of the interesting issues is information highway is congested with considerable duplicate information. Even in enterprises or the same field, lots of difference ontology are operated simultaneously, the integration of information and system has already become one of the urgent important tasks. Then many researchers propose their methods to solve these problems form different viewpoint such as system, structure and procedure etc. In these methods, some prefer a single ontology as the result of combination, and others also construct the framework by a top-bottom procedure. Some shortcomings need improvement for these ways, nevertheless, for example, original resources are lost the autonomy, or operations depend on undue compromise actually. All of these might reduce benefit of integration.
     Therefore, in order to avoid the side effect above-mentioned, We consults relevant researches of the past to improve the 「Ontology Clustering」 with the syntactic and semantic similarity measures, moreover, the main purpose is to ensure the accuracy in concept integration and avoid the information loss. Then, we design a local-view oriented searching method which can help communities obtain necessary knowledge in accordance with his interest and view to expand benefit of knowledge sharing.

      Abstract  I   摘要   III   目錄   IV   圖目錄  VII   表目錄  IX   第一章、緒論 1     第一節、研究背景與動機 1     第二節、研究目的 4     第三節、研究範圍與限制 4     第四節、論文流程與大綱 5   第二章、文獻探討 7     第一節、本體論 7       2.1.1 本體論的定義 7       2.1.2 本體論的應用與類別 8       2.1.3 本體論語言 10       2.1.3.1 從SGML到XML 10       2.1.3.2 從XML到RDF與RDF Schema 11       2.1.3.3 從OIL、DAML+OIL到OWL 11     第二節、本體論整合 14       2.2.1 本體論整合的背景與沿革 14       2.2.1.1知識整合需求 14       2.2.1.2 語意異質性問題解決 15       2.2.2 本體論整合的定義 16       2.2.3 本體論整合的環境 17       2.2.3 本體論整合的方法 18       2.2.4 語意相似度測量方法 22   第三章、研究方法 27     第一節、Local-view Oriented Ontology的整合架構 27       Application Ontology 27       Community Ontology 30       One-to-one Ontology Comparison 30       Intermediate Shared Ontology Generation 30       Shared Ontology 30       Local-View Oriented Retrieval 31     第二節、採用One-to-one Bottom-up Ontology整合流程的原因 31       3.2.2 採用One-to-one整合的原因 31       3.2.1 採用Bottom-up Ontology整合流程的原因 33     第三節、One-to-one Ontology Comparison 36       3.3.1 採用Application Ontology協助整合活動的原因 36       3.3.2 Ontology解析 37       3.3.3兩階段語法語意相似度比較 37       3.3.2 未比較概念再分析 42     第四節、Shared Ontology的產生 43     第五節、Local-view Oriented的擷取流程 45   第四章、實作驗證 48     第一節、系統架構 48     第二節、系統開發環境介紹 50       4.2.1 系統開發技術與工具 50       4.2.2 系統運作流程 52     第三節、系統實作 53     第四節、系統試驗 58       4.4.1 系統試驗對象 58       4.4.2 評估指標 61       4.4.3 試驗項目 62     第五節、試驗結果與分析討論 62       4.5.1 試驗結果 62       4.5.2 分析討論 67     第五章、結論與未來研究方向 68       第一節、結論 68       第二節、未來研究方向 69     參考文獻 71         英文部分 71         網路資料 76       附錄一、Community Ontology 78         mads.owl 78         tps.owl 80         funcat.owl 82

    英文部分
    Baker, P.G., Goble, C.A., Bechhofer, S., Paton, N.W., Stevens, R. & Brass, A. (1999). An Ontology for Bioinformatics Applications. Bioinformatics, 15(6), 510-520.

    Budanitsky, A. (1999). Lexical Semantic Relatedness and Its Application in Natural Language Processing (Technical Rep. No. CSRG-390). Department of Computer Science, University of Toronto.

    Bright, M.W., Hurson, A.R., & Pakzad, S. (1994). Automated resolution of semantic
    heterogeneity in multidatabases. ACM Transactions on Database Systems, 19(2), 212-253.

    Bunge, M. (1977). Ontology I: The Furniture of the World. Treatise on Basic Philosophy, 3.

    Corcho, O., Fernández-López, M., & Gómez-Pérez, A. (2003). Methodologies, tools and languages for building ontologies. Where is their meeting point?. Data and Knowledge Engineering, 46(1), 41-64.

    Cruz, I. F., & Rajendran, A. (2003). Semantic Data Integration in Hierarchical Domains. IEEE Intelligent Systems, 18(2), 66-73.

    Ding, Y., & Foo, S. (2002a). Ontology research and development: Part 1 – A review of Ontology generation. Journal of Information Science, 28(2), 123-136.

    Ding, Y., & Foo, S. (2002b). Ontology research and development: Part 2 – A review of Ontology mapping and evolving. Journal of Information Science, 28(5), 375-388.

    Ding, Y., Fensel, D., Klein M., & Omelayenko, B. (2002). The semantic web: yet another hip?. Data and Knowledge Engineering, 41(2/3), 205-227.

    Fensel, D. (2001). Ontologies: A silver bullet for Knowledge Management and E-Commerce. SpringerVerlag.

    Fensel, D., Harmelen, F. V., Horrocks, I., McGuinness, D. L., & Patel-Schneider, P. F. (2001). OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent System & Their Applications, 16(2), 38-45.

    Fowler, J., Nodine, M., Perry, B., & Bargmeyer, B. (1999). Agent-based semantic interoperability in Infosleuth. Sigmod Record, 28(1), 60-67.

    Gangemi, A., Pisanelli, D.M., & Steve, G. (1999). An overview of the ONIONS project: Applying ontologies to the integration of medical terminologies. Data and Knowledge Engineering, 31(2), 183-220.

    Garcia-Molina H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V., & Widom, J. (1997). The TSIMMIS Approach to Mediation: Data Models and Languages. Journal of Intelligent Information Systems, 8(2), 117-132.

    Gómez-Pérez, A. and O. Corcho. (2002). Ontology Languages for the Semantic Web. IEEE Intelligent System, 17(1), 54-60.

    Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, 5, 199-220.

    Guarino, N. (1998). Formal Ontology and Information Systems. Amsterdam, IOS Press.

    Guarino, N., & Boldrin, L . (1993). Ontological requirements for knowledge sharing. IJCAI93 Workshop for Knowledge Sharing and Information Interchange , Chambery, France.

    Guarino, N., & Giaretta, P. (1995). Ontologies and knowledge bases: Towards a terminological clarification. In N. Mars (Eds.), Towards very large knowledge bases: Knowledge building and knowledge sharing (pp. 25-32). Amsterdam, IOS Press.

    Kim, W., & Seo, J. (1991). Classifying schematic and data heterogeneity in multidatabases systems. IEEE Computer, 24(2), 12-18.

    Lassila, O., van Harmelen, F., Horrocks, I., Hendler, J., & McGuinness, D.L. (2000). The semantic Web and its languages. IEEE Intelligent Systems, 15(6), 67-73.

    Levenshtein, I. V. (1966). Binary Codes capable of correcting deletions, insertions, and reversals. Cybernetics and Control Theory, 10(8), 707–710.

    Li, Y., Bandar, Z.A., & Mclean, D. (2003). An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering, 15(4), 871-882.

    Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics, 19(10), 1275-1283.

    Maedche, A., & Staab, S. (2001). Comparing ontologies— similarity measures and a comparison study (Internal Rep. No. 408). Institute AIFB, University of Karlsruhe.

    Maedche, A., Motik, B., Stojanovic, L., Studer, R., & Volz, R. (2003). Ontologies for enterprise knowledge management. IEEE Intelligent Systems, 18(2), 26–33.

    McGuinness, D.L., Fikes, R., Hendler, J., & Stein, L.A.. (2002). DAML+OIL: An Ontology Language for the Semantic Web. IEEE Intelligent Systems, 17(5), 72-80.

    McGuinness, D.L., Fikes, R., Rice, J. & Wilder, S. (2000). An environment for merging and testing large ontologies. Proceedings of the Seventh International
    Conference on Principles of Knowledge Representation and Reasoning (KR2000), Breckenridge, Colorado, USA.

    Miller, G..A. (1995). WordNet: A Lexical Database for English. Communications of ACM, 38(11), 39-41.

    National Library of Medicine. UMLS Knowledge Sources. (2003 ed.). Bethesda, Maryland, USA: NLM.

    Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T., & Swartout, W.R. (1991). Enabling Technology for Knowledge Sharing. AI Magazine, 12(3), 36-56.
    Noy, N.F., & Hafner, C.D. (1997) The State of the Art in Ontology Design. AI Magazine, 18(3), 53-74.

    Noy, N.F., & Musen, M.A. (1999). SMART: Automated support for Ontology merging and alignment. Twelfth Banff Workshop on Knowledge Acquisition, Modeling, and Management, Banff, Alberta, Canada.

    Noy, N.F., & Musen, M.A. (2000). PROMPT: Algorithm and tool for automated Ontology merging and alignment. Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Austin, TX, USA.

    Palopoli,L., Pontieri, L., Terracina, G. & Ursino, D. (2000). Intensional and extensional integration and abstraction of heterogeneous databases. Data and Knowledge Engineering, 35(3), 201-237.

    Patel-Schneider, P. F., & Siméon, J. (2003). The Yin/Yang Web: A Unified Model for XML Syntax and RDF Semantics. IEEE Transactions on Knowledge and Data Engineering, 15(4), 797-812.

    Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, CA.

    Resnik, P. (1999). Semantic Similarity in a Taxonomy: An Information-Based easure and Its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research. 11, 95-130.

    Pinto, S., Gómez-Pérez, A., & Martins, J. (1999). Some Issues on Ontology Integration. Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden.

    Rodríguez, M. A., & Egenhofer, M. J. (2003). Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering, 15(2), 442-456.

    Salton, G.. (1989). Automatic Text Processing. Addison-Wesley, Reading, MA.

    Srinivasan, U., Ngu, A. H. H., & Gedeon, T. (2000). Managing heterogeneous information systems through discovery and retrieval of generic concepts. Journal of the American Society for Information Science, 51(8), 707-723.

    Steve, G., Gangemi, A., & Pisanelli, D.M. (1997). Integrating Medical Terminologies with ONIONS Methodology. In H. Kangassalo, & J.P. Charrel (Eds.), Information Modelling and Knowledge Bases VIII, Amsterdam, IOS Press.

    Studer, R., Benjamins, V.R., & Fensel, D. (1998). Knowledge engineering: principles and methods, Data and Knowledge Engineering, 25, 161-197.

    Tamma, V.A.M., Visser, P.R.S., Malerba, D., & Jones, D.M. (2000). Computer Assisted Ontology clustering for Knowledge sharing. Proceedings of the ECML'2000/ML net Workshop on Machine Learning in the New Information Age, Barcelona, Spain.

    The Gene Ontology Consortium. (2000). Gene Ontology: Tool for the unification of biology. Nat. Genet., 25, 25-29.

    Uschold, M., & Jasper, R. (1999). A Framework for Understanding and Classifying Ontology Applications, IJCAI99 Workshop on Ontologies and Problem-Solving Methods, Stockholm, Sweden.

    Van Heijst, G., Schreiber, T. & Wielinga B. (1997). Using explicit ontologies in KBS. International Journal of Human-Computer Studies, 46(2/3), 183-292.

    Visser, P.R.S., & Cui, Z. (1998). Heterogeneous Ontology structures for distributed architectures. ECAI-98 Workshop on Applications of Ontologies and Problem-solving Methods, Brighton, UK.

    Visser, P.R.S., & Tamma, V.A.M. (1999). An experience with Ontology clustering for information integration. Proceedings of the IJCAI-99 Workshop on Intelligent Information Integration in conjunction with the Sixteenth International Joint Conference on Artificial Intelligence, Stockholm, Sweden.

    Williams, A., Padmanabhan, A., & Blake, M. B. (2003). Local consensus ontologies for B2B-Oriented service composition. Proceedings of the second international joint conference on Autonomous agents and multiagent systems, Melbourne, Australia.

    網路資料
    Costello, R. L., & Jacobs, D. B. (2003, June 30). OWL Web Ontology Language. OWL Tutorial, Retrieved October 8, 2003, from the World Wide Web: http://www.xfront.com/owl/.

    Sowa, J.F. (2001, August 26). Building, Sharing, and Merging Ontologies, Retrieved October 6, 2003, from the World Wide Web: http://www.jfsowa.com/Ontology/ontoshar.htm.

    HP Labs Semantic Web Research. (2004, February). Jena 2 - A Semantic Web Framework, Retrieved March 7, 2004, from the World Wide Web: http://www.hpl.hp.com/semweb/jena2.htm.

    The World Wide Web Consortium. (2003a, August 20). Extensible Markup Language (XML). Retrieved October 7, 2003, from the World Wide Web: http://www.w3.org/XML/.

    The World Wide Web Consortium. (2003b, August 5). Resource Description Framework (RDF). Retrieved October 7, 2003, from the World Wide Web: http://www.w3.org/RDF/.

    The World Wide Web Consortium. (2003c, August 18). OWL Web Ontology Language Overview. Retrieved October 8, 2003, from the World Wide Web: http://www.w3.org/TR/owl-features/.

    下載圖示 校內:2005-06-30公開
    校外:2019-06-30公開
    QR CODE