簡易檢索 / 詳目顯示

研究生: 凃嘉豪
Tu, Chia-Hao
論文名稱: 石墨烯與其衍生物之成長與分析
Growth and Characterization of Graphene and Its Derivatives
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 101
中文關鍵詞: 石墨烯石墨烯奈米牆奈米碳管化學氣相沉積電子顯微鏡
外文關鍵詞: Graphene, Graphene Nanowall, CNT, CVD, TEM
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主要在探討石墨烯及其衍生物的成長機制,包括單層雪花狀石墨烯,多孔多層石墨烯,奈米碳管成長於多孔多層石墨烯之複合物,以及多層站立之石墨烯奈米牆。首先,以銅箔為催化劑,利用化學氣相沉積法在銅箔上成長大面積的單層石墨烯,其大小超過0.5平方公厘。本研究藉由拉曼光譜以及電子顯微鏡等材料分析技術,證明石墨烯在越長越大的過程中,即使受到銅箔催化成長,其晶體方向並不會因為遇到底下的銅晶界而更改晶體方向(Orientation),但可能會改變其成長方向(growth front)。並藉由量測石墨烯的電子遷移率驗證,有通過銅晶界及沒有通過的雪花分支,兩者電子遷移率沒有太大差異。主要原因推測是在成長過程中,接近銅熔點的高溫下,在晶粒表面銅原子並沒有與石墨烯的碳原子有很強的鍵結,因此不會主導石墨烯的晶體方向。本論文也同時探討了石墨烯與銅晶粒的原子排列結構關係。
    除此之外,我們也發展出一種方法置備空心奈米碳棒以及多孔石墨烯的複合物。首先利用固體擴散法成長具有多孔性的石墨烯薄膜,再以此為基板,在未使用任何金屬催化劑情況下,利用化學氣相沉積法在其上成長空心奈米碳棒。置備多孔石墨烯基板主要分成兩個步驟:一,先在矽晶板上鍍上非晶質的碳膜,在其上鍍上鎳金屬薄膜做為催化劑;二,藉由高溫退火後,碳原子會由鎳晶界擴散至鎳薄膜表面形成石墨烯。由於高溫退火時,鎳晶粒成長,會形成空孔,這些空孔則做為多孔石墨烯的模板。分析所得的複合物,發現大部分空心奈米碳棒沿著石墨烯空孔的邊緣成長,推測石墨烯空孔的邊緣具有許多的碳懸鍵(dangling bond),可以做為奈米碳棒成長的成核點。本論文也利用拉曼及電子顯微鏡對所合成出來的多空石墨烯以及複合物分析,並探討兩者的成長機制。
    最後,本論文還闡述直接在單晶矽基板上成長石墨烯奈米牆的可能性。根據實驗結果,發現(100)單晶矽基板,在預處理過程中,{100}的表面會被離子化的氫氣蝕刻後產生許多{111}的奈米級平面。透過高解析穿透式電子顯微鏡,可以觀察到由AA-stacked多層石墨烯奈米牆的晶格條紋與矽{111}的晶格條紋相接,顯示石墨烯奈米牆可以直接成核於矽{111}平面上,並繼續成長。而非晶質的碳與碳化矽奈米顆粒則被發現沉積於其他的矽晶面上。這是由於石墨烯奈米牆與矽的晶格不匹配系數非常小,因此兩者可以異質磊晶成長。

    The aim of this research is to investigate the growth mechanism of the synthesis of graphene related materials by various methods. The graphene related materials include monolayer graphene snowflake, porous graphenic carbon film, composite of carbon nanorod on porous graphenic carbon film, and graphene nanowalls.
    First, chemical vapor deposition is employed to grow large single-domain graphene snowflakes (> 0.5 mm2) on Cu foil by crossing numerous Cu grain boundaries underneath. The orientation of the graphene snowflake branches is preserved when crossing the Cu grain boundaries, as evidenced by Raman spectra and transmission electron microscopy analysis. Diffraction patterns and scanning electron microscopy images reveal a relationship between the growth front and the orientation of graphene snowflakes. The graphene snowflake branch portions before and after crossing a Cu grain boundary show similar effective field-effect mobilities, confirming that the orientation did not change. Diffraction patterns of graphene and electron backscattering diffraction maps of Cu grains are used to study graphene lattice overlap below Cu grains. The orientation of Cu grains has little influence on the growth of top graphene snowflakes, probably due to the weak bonding interaction between Cu grains and graphene, constraining the growth of graphene snowflakes at temperatures close to the melting point.
    Second, a method is developed for growing three-dimensional hierarchic structures of porous graphenic carbon film/ hollow carbon nanorods where porous graphenic carbon film is first synthesized followed by, growth of carbon nanorods. Porous graphenic carbon films were synthesized by solid-state diffusion on nickel thin film. By annealing an amorphous carbon layer deposited underneath a nickel thin film at elevated temperatures, the porous graphenic carbon film forms on top via carbon diffusion and precipitation from the grain boundaries of the nickel film. Hollow carbon nanorods can then be grown on the pore edges of the porous graphenic carbon film by chemical vapor deposition without catalysts. It is speculated that the dangling bonds of the carbon atoms on the pore edges of the graphene layers might be responsible for the nucleation of the hollow carbon nanorods. The microstructures and growth mechanisms of both porous graphenic carbon film and hollow carbon nanorods are characterized and discussed in detail.
    Finally, carbon nanowalls were successfully grown on Si(001) wafer by direct-current plasma enhanced chemical vapor deposition. Carbon nanowalls, standing structure of graphene sheets, are vertical to substrate. Heteroepitaxial nucleation of {002} graphene sheets on {111} facets of plasma treated (100) silicon is confirmed by high-resolution transmission electron microscopy. Lattice mismatch by 12% is compensated by tilting the graphene {002} with respect to silicon {111} and matching the silicon lattice with fewer graphene layers. The interlayer spacing of graphene sheets near the silicon surface is 0.355 nm, which is larger than that of AB stacked graphite and confirmed as AA stacked graphitic phase. A strong Raman peak corresponding to silicon-hydrogen stretch vibration is detected by 633 nm excitation at the early stage of graphene nucleation, indicating the silicon substrate etched by hydrogen plasma. With these analyses, the growth mechanism is also proposed.

    Table of Content 摘要 I Abstract III Acknowledgements V Table of Content VII List of Figures XI CHAPTER 1 INTRODUCTION 1 1.1 Overview of Graphene and Graphene derivatives 1 1.2 Overview of graphene derivatives 3 1.3 Motivation and outline of the thesis 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Synthesis of Graphene By Chemical Vapor Deposition 7 2.1.1 Surface catalysis mechanism of copper substrate 9 2.1.2 Orientation relationship between graphene and Cu substrate 12 2.1.3 Growth graphene by solid state diffusion 14 2.2 Graphene transferring method 17 2.3 Analysis of Graphene by Raman spectroscopy 22 2.4 Characterization of Graphene by Transmission electron microscopy 25 2.5 Synthesis of Porous Graphene 29 2.6 Synthesis of Carbon Nanotubes on Graphene 31 2.7 Synthesis of Graphene nanowalls 32 CHAPTER 3 EXPERIMENTAL APPARATUS 36 3.1 Growths Facility 36 3.1.1 Introduction of Chemical Vapor Deposition 36 3.1.2 Introduction of Ion-beam Sputtering Deposition 39 3.2 Graphene transfer 40 3.3 Materials Characterization 41 3.3.1 Raman spectroscopy 41 3.3.2 X-ray Diffraction (XRD) 41 3.3.3 X-ray photoelectron spectroscopy (XPS) 41 3.3.4 Scanning electron microscopy (SEM) 42 3.3.5 Electron backscatter diffraction (EBSD) 42 3.3.6 Transmission electron microscopy (TEM) 42 3.3.7 Measurement of electrical properties 43 CHAPTER 4 GROWTH OF LARGE AREA GRAPHENE SNOWFLAKE 44 4.1 Motivation 44 4.2 Experiments 44 4.3 The growth of graphene snowflake 45 4.3.1 Morphology of graphene snowflake 45 4.3.2 Quality of Graphene snowflake 47 4.3.3 Electrical Properties of Graphene snowflake 51 4.3.4 Orientation of graphene snowflake 54 4.3.5 Orientation relation of graphene snowflake and underneath copper grains 60 4.4 Nucleation Stage of Graphene Snowflake 62 4.5 Discussion of Growth Mechanism 64 CHAPTER 5 DIRECT GROWTH OF HOLLOW CARBON NANORODS ON POROUS GRAPHENIC CARBON FILM WITHOUT CATALYSTS 65 5.1 Motivation 65 5.2 Experiments 66 5.2.1 Growth of carbon nanotube on porous multilayer graphene 68 5.3 Analysis results 69 5.3.1 Structure of Porous Graphenic Carbon Film 69 5.3.2 Quality of Porous Graphenic Carbon Film 71 5.3.3 Analysis of hybrid nanostructure of HCNs/porous graphenic carbon film 71 5.4 Discussion of Growth Mechanism 76 CHAPTER 6 HETEROEPITAXIAL GROWTH OF GRAPGHENE NANOWALLS ON SI(111) 79 6.1 Motivation 79 6.2 Experiments 79 6.2.1 Growth of graphene nanowalls 79 6.2.2 Characterization of graphene nanowalls 80 6.3 Analysis results 80 6.3.1 Elemental analysis of Graphene Nanowalls 80 6.3.2 Morphology of graphene nanowalls 81 6.3.3 Structure of graphene nanowalls 82 6.3.4 Microstructure of nraphene nanowalls on Si (111) 86 6.4 Discussion of Growth Mechanism 89 CHAPTER 7 CONCLUSIONS 90 CHAPTER 8 REFERENCES 92 PUBLICATION LIST 100

    REFERENCES
    [1] Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev. Mod. Phys. 2009;81(1):109.
    [2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306(5696):666.
    [3] Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. Room-Temperature Quantum Hall Effect in Graphene. Science. 2007;315(5817):1379.
    [4] Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys. 2006;2(9):620.
    [5] Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009;9(12):4359.
    [6] Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385.
    [7] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Communications. 2008;146(9-10):351.
    [8] Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902.
    [9] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed. 2009;48(42):7752.
    [10] Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183.
    [11] Tzeng Y, Chen CL, Chen YY, Liu CY. Carbon nanowalls on graphite for cold cathode applications. Diam Relat Mater. 2010;19(2-3):201.
    [12] Smith RC, Cox DC, Silva SRP. Electron field emission from a single carbon nanotube: Effects of anode location. Appl Phys Lett. 2005;87(10):264.
    [13] Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev. 2010;55(1):41.
    [14] Krivchenko VA, Evlashin SA, Mironovich KV, Verbitskiy NI, Nefedov A, Woll C, Kozmenkova AY, Suetin NV, Svyakhovskiy SE, Vyalikh DV, Rakhimov AT, Egorov AV, Yashina LV. Carbon nanowalls: the next step for physical manifestation of the black body coating. Sci Rep. 2013;3:3328.
    [15] Fan ZJ, Yan J, Wei T, Ning GQ, Zhi LJ, Liu JC, Cao DX, Wang GL, Wei F. Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano. 2011;5(4):2787.
    [16] Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Lett. 2008;8(10):3166.
    [17] Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi JY, Park JS. Synthesis of Chemically Bonded Graphene/Carbon Nanotube Composites and their Application in Large Volumetric Capacitance Supercapacitors. Adv Mater. 2013;25(47):6854.
    [18] Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U. Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Phys Rev Lett. 2009;103(24):246804.
    [19] Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324(5932):1312.
    [20] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706.
    [21] Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareno J, Gambin V, Petrov I, Kodambaka S. Growth of Semiconducting Graphene on Palladium. Nano Lett. 2009;9(12):3985.
    [22] Yu QK, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters. 2008;93(11): 113103.
    [23] Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009;9(1):30.
    [24] Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater. 2008;7(5):406.
    [25] Pan Y, Zhang HG, Shi DX, Sun JT, Du SX, Liu F, Gao HJ. Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). Adv Mater. 2009;21(27):2739.
    [26] Loginova E, Bartelt NC, Feibelman PJ, McCarty KF. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008;10:093026.
    [27] Kondo D, Sato S, Yagi K, Harada N, Sato M, Nihei M, Yokoyama N. Low-Temperature Synthesis of Graphene and Fabrication of Top-Gated Field Effect Transistors without Using Transfer Processes. Appl Phys Express. 2010;3(2):025102.
    [28] Lopez GA, Mittemeijer E. The solubility of C in solid Cu. Scripta Mater. 2004;51(1):1.
    [29] Baker H, Okamoto H. ASM Handbook, Volume 03 - Alloy Phase Diagrams. ASM International.
    [30] Li X, Cai W, Colombo L, Ruoff RS. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 2009;9(12):4268.
    [31] Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH. Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Lett. 2011;11(10):4144.
    [32] Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E. Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano. 2012;6(4):3614.
    [33] Gao J, Yip J, Zhao J, Yakobson BI, Ding F. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge. J Am Chem Soc. 2011;133(13):5009.
    [34] Chen H, Zhu W, Zhang Z. Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth. Physical Review Letters. 2010;104(18):186101.
    [35] Celebi K, Cole MT, Teo KBK, Park HG. Observations of Early Stage Graphene Growth on Copper. Electrochem Solid St. 2012;15(1):K1.
    [36] Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469(7330):389.
    [37] Zhang Y, Zhang L, Kim P, Ge M, Li Z, Zhou C. Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties. Nano Lett. 2012;12(6):2810.
    [38] Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J Am Chem Soc. 2011;133(9):2816.
    [39] Lu A-Y, Wei S-Y, Wu C-Y, Hernandez Y, Chen T-Y, Liu T-H, Pao C-W, Chen F-R, Li L-J, Juang Z-Y. Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Advances. 2012;2(7):3008.
    [40] Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW. Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Lett. 2011;11(11):4547.
    [41] Ishihara M, Koga Y, Kim J, Tsugawa K, Hasegawa M. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Mater Lett. 2011;65(19-20):2864.
    [42] Hu B, Ago H, Orofeo CM, Ogawa Y, Tsuji M. On the nucleation of graphene by chemical vapor deposition. New Journal of Chemistry. 2012;36(1):73.
    [43] Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben EN, Fisher B, Guest JR, Chen YP, Guisinger NP. Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing. ACS Nano. 2011;5(5):3607.
    [44] Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, Peng H, Liu Z. Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano. 2011;5(5):4014.
    [45] Rasool HI, Song EB, Mecklenburg M, Regan BC, Wang KL, Weiller BH, Gimzewski JK. Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals. J Am Chem Soc. 2011;133(32):12536.
    [46] Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, Weiller BH, Gimzewski JK. Continuity of Graphene on Polycrystalline Copper. Nano Lett. 2010;11(1):251.
    [47] He R, Zhao L, Petrone N, Kim KS, Roth M, Hone J, Kim P, Pasupathy A, Pinczuk A. Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates. Nano Lett. 2012;12(5):2408.
    [48] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature. 2010;468(7323):549.
    [49] Baraton L, He ZB, Lee CS, Maurice JL, Cojocaru CS, Gourgues-Lorenzon AF, Lee YH, Pribat D. Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films. Nanotechnology. 2011;22(8):085601.
    [50] Zheng M. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett. 2010;96(6):063110.
    [51] Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009;9(12):4359.
    [52] Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5(8):574.
    [53] Wang D-Y, Huang IS, Ho P-H, Li S-S, Yeh Y-C, Wang D-W, Chen W-L, Lee Y-Y, Chang Y-M, Chen C-C, Liang C-T, Chen C-W. Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Adv Mater. 2013;25(32):4521.
    [54] Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235.
    [55] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Physical Review Letters. 2006;97(18):187401.
    [56] Egerton RF, McLeod R, Wang F, Malac M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy. 2010;110(8):991.
    [57] Sasaki T, Sawada H, Hosokawa F, Kohno Y, Tomita T, Kaneyama T, Kondo Y, Kimoto K, Sato Y, Suenaga K. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J Electron Microsc. 2010;59:S7.
    [58] Suh Y, Park S, Kim M. High Resolution TEM and Electron Diffraction Study of Graphene Layers. Microscopy and Microanalysis. 2009;15:1168.
    [59] Jiang LL, Fan ZJ. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale. 2014;6(4):1922.
    [60] Bieri M, Treier M, Cai JM, Ait-Mansour K, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng XL, Mullen K, Fasel R. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun. 2009(45):6919.
    [61] Yi J, Lee DH, Lee WW, Park WI. Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping. J Phys Chem Lett. 2013;4(13):2099.
    [62] Zeng ZY, Huang X, Yin ZY, Li H, Chen Y, Li H, Zhang Q, Ma J, Boey F, Zhang H. Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Adv Mater. 2012;24(30):4138.
    [63] Bai JW, Zhong X, Jiang S, Huang Y, Duan XF. Graphene nanomesh. Nat Nanotechnol. 2010;5(3):190.
    [64] Liang XG, Jung YS, Wu SW, Ismach A, Olynick DL, Cabrini S, Bokor J. Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Lett. 2010;10(7):2454.
    [65] Yang D-P, Wang X, Guo X, Zhi X, Wang K, Li C, Huang G, Shen G, Mei Y, Cui D. UV/O3 Generated Graphene Nanomesh: Formation Mechanism, Properties, and FET Studies. J Phys Chem C. 2013;118(1):725.
    [66] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AR, Kittrell C, Hauge RH, Tour JM. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun. 2012;3(125):1225.
    [67] Kim YS, Kumar K, Fisher FT, Yang EH. Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology. 2012;23(1):035301.
    [68] Takagi D, Kobayashi Y, Hommam Y. Carbon Nanotube Growth from Diamond. J Am Chem Soc. 2009;131(20):6922.
    [69] Lin JH, Chen CS, Rummeli MH, Bachmatiuk A, Zeng ZY, Ma HL, Buchner B, Chen HW. Growth of Carbon Nanotubes Catalyzed by Defect-Rich Graphite Surfaces. Chem Mater. 2011;23(7):1637.
    [70] Wu Y, Yang B, Zong B, Sun H, Shen Z, Feng Y. Carbon nanowalls and related materials. J Mat Chem. 2004;14(4):469.
    [71] Hiramatsu M, Hori M. Carbon Nanowalls: Synthesis and Emerging Applications: Springer; 2010.
    [72] Tzeng Y, Chen C-L, Chen Y-Y, Liu C-Y. Carbon nanowalls on graphite for cold cathode applications. Diam Relat Mater.19(2-3):201-4.
    [73] Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Van Tendeloo G, Vanhulsel A, Van Haesendonck C. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 2008;19(30):305604.
    [74] Vitchev R, Malesevic A, Petrov RH, Kemps R, Mertens M, Vanhulsel A, Van Haesendonck C. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 2010;21(9):095602.
    [75] Yoshimura A, Yoshimura H, Shin SC, Kobayashi K-i, Tanimura M, Tachibana M. Atomic force microscopy and Raman spectroscopy study of the early stages of carbon nanowall growth by dc plasma-enhanced chemical vapor deposition. Carbon. 2012;50(8):2698.
    [76] Lee J-K, Lee S-C, Ahn J-P, Kim S-C, Wilson JIB, John P. The growth of AA graphite on (111) diamond. J Chem Phys. 2008;129(23):234709.
    [77] Huang H, Chen W, Chen S, Wee ATS. Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001). ACS Nano. 2008;2(12):2513.
    [78] Suemitsu M, Fukidome H. Epitaxial graphene on silicon substrates. Journal of Physics D: Applied Physics. 2010;43(37):374012.
    [79] Yonhua T, Kengchih L, Chih-Yi L, Chun-Cheng C, Yikuan W. Controlled nucleation and growth of graphene: Competitive growth and etching in hydrogen diluted methane. Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on; p. 1.
    [80] Wu Y. Chemical vapor deposition of graphene on copper and its analyses. National Cheng Kung University, MS thesis, 2013.
    [81] Aleman B, Regan W, Aloni S, Altoe V, Alem N, Girit C, Geng BS, Maserati L, Crommie M, Wang F, Zettl A. Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. ACS Nano. 2010;4(8):47628.
    [82] Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, von Klitzing K, Smet JH. Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 2010;10(4):1149.
    [83] Wang HM, Wu YH, Cong CX, Shang JZ, Yu T. Hysteresis of Electronic Transport in Graphene Transistors. ACS Nano. 2010;4(12):7221.
    [84] Yagi K, Yamada A, Hayashi K, Harada N, Sato S, Yokoyama N. Dependence of Field-Effect Mobility of Graphene Grown by Thermal Chemical Vapor Deposition on Its Grain Size. Jpn J Appl Phys. 2013;52(11):110106.
    [85] Song HS, Li SL, Miyazaki H, Sato S, Hayashi K, Yamada A, Yokoyama N, Tsukagoshi K. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep. 2012;2:337.
    [86] Yu QK, Jauregui LA, Wu W, Colby R, Tian JF, Su ZH, Cao HL, Liu ZH, Pandey D, Wei DG, Chung TF, Peng P, Guisinger NP, Stach EA, Bao JM, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater. 2011;10(6):443.
    [87] Hayashi K, Sato S, Ikeda M, Kaneta C, Yokoyama N. Selective Graphene Formation on Copper Twin Crystals. J Am Chem Soc. 2012;134(30):12492.
    [88] Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Park CR, Tascon JMD, Zhang J. All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. Carbon. 2013;65:1.
    [89] Hiura H, Miyazaki H, Tsukagoshi K. Determination of the Number of Graphene Layers: Discrete Distribution of the Secondary Electron Intensity Stemming from Individual Graphene Layers. Appl Phys Express. 2010;3(9):095101.
    [90] Kochat V, Pal AN, Sneha ES, Sampathkumar A, Gairola A, Shivashankar SA, Raghavan S, Ghosh A. High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy. Journal of Applied Physics. 2011;110(1):014315.
    [91] Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143(1-2):47.
    [92] Lim HE, Miyata Y, Kitaura R, Nishimura Y, Nishimoto Y, Irle S, Warner JH, Kataura H, Shinohara H. Growth of carbon nanotubes via twisted graphene nanoribbons. Nat Commun. 2013;4(2548):1.
    [93] Muradov N, Smith F, T-Raissi A. Catalytic activity of carbons for methane decomposition reaction. Catal Today. 2005;102:225.
    [94] Zhang M, Li J. Carbon nanotube in different shapes. Mater Today. 2009;12(6):12.
    [95] Chen W-L. Carbon nanowall, diamond, graphene and related carbon composite films for electrochemical and field emission applications. National Cheng Kung University, Master, 2011.
    [96] Kusunoki I, Igari Y. Xps Study of a Sic Film Produced on Si(100) by Reaction with a C2h2 Beam. Appl Surf Sci. 1992;59(2):95.
    [97] Ley L, Cardona M. Photoemission in Solids II: Case Studies: Springer-Verlag; 1979.
    [98] Lascovich JC, Giorgi R, Scaglione S. Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl Surf Sci. 1991;47(1):17.
    [99] Brookes PN, Fraser S, Short RD, Hanley L, Fuoco E, Roberts A, Hutton S. The effect of ion energy on the chemistry of air-aged polymer films grown from the hyperthermal polyatomic ion Si2OMe5+. J Electron Spectrosc Relat Phenom. 2001;121(1-3):281.
    [100] Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon DN, Delamesiere M, Draper S, Zandbergen H. Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett. 1994;221(1-2):53.
    [101] Lee JK, Lee SC, Ahn JP, Kim SC, Wilson JIB, John P. The growth of AA graphite on (111) diamond. J Chem Phys. 2008;129(23):234709.
    [102] Zhong XY, Chen YC, Tai NH, Lin IN, Hiller JM, Auciello O. Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping. J Appl Phys. 2009;105(3):034311.
    [103] Shimabukuro S, Hatakeyama Y, Takeuchi M, Itoh T, Nonomura S. Effect of hydrogen dilution in preparation of carbon nanowall by hot-wire CVD. Thin Solid Films. 2008;516(5):710.

    下載圖示 校內:2020-02-16公開
    校外:2020-02-16公開
    QR CODE