| 研究生: |
羅文斌 Lo, Wen-Pin |
|---|---|
| 論文名稱: |
直管層流火焰速度量測觀察與修正 The Experimental Observation and Correction of Laminar Flame Speed Measurements by Tube Method |
| 指導教授: |
袁曉峰
Yuan, Tony |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 拉伸速率 、直管量測 、層流火焰速度 |
| 外文關鍵詞: | stretch rate, tube method, laminar flame speed |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用實驗設計,建立一套封閉系統下之等壓直管層流火焰量測系統,量測火焰在直管內傳遞速度與火焰焰面面積變化,分析管壁對火焰傳遞的影響,並配合公式的修正,以求得甲烷與丙烷在1atm與300K環境下之不同混合當量比的真實層流火焰速度。
實驗觀察甲烷(φ=0.75-1.25)與丙烷(φ=0.85-1.30)在直管之火焰燃燒現象。透過系統設計應用擴散器、蓄壓器以消除封閉系統之壓力變化,並應用光電二極體與計時器以觀察並計算火焰傳遞速度。由示波器所紀錄之火焰焰面訊號,可估算焰面面積後求得真實層流火焰速度。所得火焰速度之趨勢與文獻資料相符合,克服傳統直管量測技術無法等壓量測火焰速度之困難。
實驗觀察到火焰在直管內之燃燒焰面面積隨混合當量比增加而提升,且甲烷之火焰焰面面積大於丙烷之火焰焰面面積;對於火焰傳遞速度與混合當量比之比較關係,在貧油狀態下,火焰傳遞速度會受混合當量比改變而變化較大,而在富油狀態下,火焰傳遞速度受混合當量比影響較小。貧油的燃燒狀態亦具較大之不穩定性;受到加工鑽洞(d=1mm)之影響,貧油焰面易產生焰面破碎分離的現象,影響焰面面積估算。
火焰於直管內傳遞速度與火焰焰面面積成正比之關係,研究分析直管火焰燃燒之焰面變化(或拉伸速率Stretch Rate(α))主要受下列重要因素影響:火焰面積效應(αf>0)、熱傳效應(αh<0,熱傳導與熱輻射)與浮力效應(αb<0)等影響,使得火焰傳遞速度(火焰焰面面積)開始加速度快速增加而達最大值後,開始減緩而趨於穩定(Σα≒0)。
This thesis research is to measure the laminar flame speed and to study the flame propagation phenomena in a constant-pressure, closed tube system. CH4/Air and C3H8/Air mixtures with different equilibrium ratios at initial temperature 300K and pressure 1atm were studied.
Experimental system design used a pressure wave damper and a pressure absorber to maintain the system at constant pressure during flame propagation. Twelve-photodiodes coupled with a multi-channel counter were used to calculate the flame propagation speeds. By analyzing the photodiode signals, flame areas were estimated at several locations in tube with adequate assumptions. Laminar flame speeds were then determined with the accurate measurements of flame propagation speeds and the estimated flame areas. The resulting data from present experiments properly meet the data presented in literatures.
The analyses showed the flame area increased with increasing equilibrium ratio, and the flame area of the CH4 is larger than that of C3H8. The analyses also showed that equilibrium ratio has a strong influence on flame propagation speed at lean conditions. However, at rich conditions the equilibrium ratio was less effective. At lean combustion, the flames were unstable near wall. Due to the disturbance of the sensor holes on the tube wall (d=1mm), the phenomenon of flame surface breakup was observed.
The flame propagation speed in tube showed a linear relation to flame area. By observing the changes of flame areas in different locations in tube, it concluded that the apparent stretch rate (α) of flame was a collective effect of flame area effect (αa>0), heat transfer (αh<0, including the heat conduction near wall and radiation heat loss), and buoyancy effect (αb<0). The collective effect makes the flame propagation speed and the corresponding flame area increase quickly at the beginning of propagation. After reaching a maximum, they then decrease to a steady condition.
【1】 K.K. Kuo, PRINCIPLES OF COMBUSTION, Chaper5, Wiley-Interscience, 1986
【2】 Abdel-Gayed, R. G., and Bradley D., Philos. Trans. R. Soc. A 301 (1457):1, 1981
【3】 Al-Dabbagh, N. A., and Andrews, G. E., Combusi. And Flame 55:31, 1984
【4】 Karpov, V., Lipatnikov, A. and Zimont, V., 26th International Symposium on Combustion, 1996
【5】 廢棄物能源利用技術開發計劃與推廣-B-廢棄物氣化利用技術,經濟部能源委員會委辦,工業技術研究院能源與資源研究所執行,90年12月
【6】 G.E. Andrews and D. Bradley, COMBUSTION AND FLAME, 18:133-153, 1972
【7】 Egolfopoulos, F.N., Zhang, H., and Zhang, Z., Combust. Flame 109:237-252, 1997
【8】 G. YU.,C.K. LAW and C.K. WU, COMBUSTION AND FLAME, 63:339-347, 1986
【9】 C. M. Vagelopoulos and F. N. Egolfopoulos, 25th International Symposium on Combustion, P1341-1347, 1994
【10】 F.N. Egolfopoulos, P. CHO and C.K. LAW, COMBUSTION AND FLAME, 76:375-391, 1989
【11】 Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A., Sandia Report SAND85-8240, 1985
【12】 Warnatz, J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, 1984, p.197
【13】 C. M. Vagelopoulos and F. N. Egolfopoulos, 27th International Symposium on Combustion, P513-519, 1998
【14】 Derek Bradley, P. H. Gaskell, and X. J. Gu, Combustion and Flame, 104: 176-198, 1996
【15】 U.J. Pfahl, M.C. Ross, J.E. Shepherd, K.O. Pasamehmetoglu and C. Unal., COMBUSTION AND FLAME, 123:140-158, 2000
【16】 X. J. Gu, M. Z. Haq, M. Lawes and R. Woolley, COMBUSTION AND FLAME, 121:41-58, 2000
【17】 D. Durox, S. Ducruix and S. Candel, COMBUSTION AND FLAME, 125:982-1000, 2001
【18】 Phylaktou, H. Andrews, G. E. and Herath, P., J. Loss Prev. Process Ind. 3:355,1990
【19】 Eiji Tomita and Osahide Miyamoto, JSME International Journal, Series II, Vol.34, No.2, 1991
【20】 R. Starke and P. Roth, COMBUSTION AND FLAME, 66:249-259, 1986
【21】 H. F. Coward and F. J. Hartwell, J. Chem. Soc. Pt2, 2676-2684, 1932
【22】 V. K. Kurdyumov and E. Fernandez-Tarrazo, Combustion and Flame, 128:382-394, 2002
【23】 G.L Dugger, S. Heimel, and R.C. Weast, Ind. And Engrg. Chem., Vol.47, P.114,1955
【24】 A.M. Kanury, Introduction to Combustion Phenomena, Chapter8, Gordon and Breach, New York, 1975
【25】 T.W. Reynolds and M. Gerstein, “Influence of Molecular Structure of Hydrocarbons on Rate of Flames Propagation,” Third Symposium (International) on Combustion, p.190-194.
【26】 C. Tanford and R. N. Pease, J. Chem. Phys., Vol.15, p431, 1947
【27】 H.Phylaktou and G.E. Andrews, COMBUSTION AND FLAME, 85:363-379, 1991
【28】 A.G. Gaydon and I.R. Hurle, The Shock Tube in High-temperature Chemical Physics, first edit, 1963
【29】 Frank Ayres, JR, Schaum’s outline series: Theory and Problems of Differential and Integral Calculus, P319, 1964
【30】 Combustion, Flames and explosion of Gases 3rd,1987, P345
【31】 J. Jarosinski, R. A. Strehlow and A. Azarbarzin, 19th International Symposium on Combustion, P1549-1557, 1982