簡易檢索 / 詳目顯示

研究生: 陳泰盛
Chen, Tai-Sheng
論文名稱: 反應式共濺鍍鉭-矽-氮(Ta-Si-N)奈米複合薄膜之微結構與機械性質研究
A Study on the microstructure and mechanical properties of Ta-Si-N nanocomposite thin films by reactive co-sputtering
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 133
中文關鍵詞: 阻障層硬質披覆奈米壓痕器奈米複合薄膜鉭-矽-氮
外文關鍵詞: Ta-Si-N, nanocomposite, nanoindentor, barriers, hard coating
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用反應式磁控共濺鍍系統成長出鉭-矽-氮(Ta-Si-N)的奈米複合薄膜,並利用快速退火爐進行不同溫度的熱穩定檢測。主要探討反應氣體-氮氣比例、功率等製程參數,對氮化鉭矽奈米複合薄膜的微結構與機械性質的影響與關係。
    本論文藉由控制鉭靶與矽靶的功率,搭配不同的氮氣流量以進行反應式磁控共濺鍍,以成長出不同成分及微結構的鉭-矽-氮薄膜。並藉由600~900 °C快速退火爐的熱處理後,探討薄膜的熱穩定性。最後將其以四點探針(Four-point method)與膜厚量測計算薄膜電阻率,以低掠角X-ray繞射儀(GIXRD)分析其微結構與結晶相,使用掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)觀察薄膜表面形貌,利用能量散佈光譜儀(EDS)與歐傑電子能譜儀(AES)檢測薄膜的化學成份,以X-ray光電子能譜儀(XPS)分析化學鍵結,以奈米壓痕器(nanoindentor)檢測薄膜的機械性質。
    實驗結果顯示,Ta-Si-N薄膜的電阻率約為300 μΩ-cm,並隨著氮氣流量比的上升而增加。當氮氣流量比為2- 10 %時,微結構為似非晶-奈米晶粒的結構,其表面形貌相對致密,機械性質也較佳。當氮氣流量比達到20 %時,會轉換為多晶的微結構,其表面形貌會較鬆散,界面較明顯,機械性質亦會降低。證明似非晶-奈米晶粒的結構可有效抑制晶界滑移,提高薄膜的機械性質。熱穩定分析中,硬度會隨著溫度變化,但仍保有一定的韌性。Ta-Si-N的E組有較多矽成份,會提高熱穩定性。總體而言,矽靶功率影響不大,所以當鉭靶功率為150 W,矽靶氮氣流量比為3 %時,會有最佳的硬度值與穩定性。預期可應用在微電子材料、微機電材料與表面硬質披覆的領域上。

    In this study, the nanocomposites of Ta-Si-N thin films were prepared by reactive magnetron co-sputtering system and were annealed by RTA in various temperatures. With different temperatures, the thin films were used to be examined its thermal stability. This study focuses on the effect that shows microstructure and mechanical properties of Ta-Si-N films as the parameters of N2 flow rates and power change.
    The Ta-Si-N films were deposited by reactive magnetron co-sputtering from pure Ta and Si targets in an Ar+N2 atmosphere. To study the thermal stability of the films, Ta-Si-N thin films were annealed at 600- 900°C by RTA. The resistivity, crystallographic structures, surface morphology, composition, nano-hardness were investigated by α-step, four-point probe, grazing incident angle X-ray diffraction (GIAXRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy and nano-indentation (MTS).
    The experiment result shows that the relationship of microstructures, morphology and nano-hardness of Ta-Si-N were clarified. The resistivity of Ta-Si-N films is 300 μΩ-cm, and it obviously goes up with the N2 flow rates increased. At the 2 %- 10 % N2 flow rates, the amorphous-like microstructure with nanocrystalline grains is nanocomposites. The microstructure has denser morphology and higher hardness. The microstructure of Ta-Si-N films was transformed to the polycrystalline structures at the 20 % N2 flow rates. And it has looser morphology and apparent boundary which causes the hardness to be lower. Therefore, powerful evidence can be proved that the amorphous like –nanocrystalline grain structure which inhibits the grain boundary sliding can enhance the hardness. In annealing process, the hardness changes with various temperatures, but it remains the toughness in regular. The thermal stability of Ta-Si-N (E) was better when the composition of silicon was more. The optimum hardness and thermal stability were found at 3 % N2 flow rates. The films are expected to apply to the field in the microelectronic, MEMS materials and hradcoatings.

    中文摘要.......................................I Abstract.......................................II 誌謝...........................................III 目錄...........................................IV 表目錄.........................................VI 圖目錄.........................................VII 第一章 緒論...................................1  1-1 前言....................................1  1-2 研究動機與目的..........................3  1-3 本文架構................................8 第二章 理論基礎與文獻回顧.....................9  2-1 電漿....................................9   2-1-1 電漿的產生與機制....................9   2-1-2 電漿的放電狀態......................13  2-1-3 電漿的特性............................15  2-2 基板偏壓與反應式濺鍍....................16  2-3 薄膜形成機制............................18  2-4 材料微結構的強化機制....................20   2-4-1 強化理論與Hall-Petch關係式..........20   2-4-2 多層結構的韌化機制..................22   2-4-3 奈米晶粒/非晶結構的強化機制.........23  2-5 奈米複合薄膜............................26   2-5-1 奈米複合薄膜沈積機制................26   2-5-2 奈米複合薄膜的文獻回顧..............29  2-6 氮化鉭矽(Ta-Si-N)薄膜的應用.............34  2-7 奈米尺度下機械性質的檢測................37   2-7-1 基材效應與壓痕大小效應..............38   2-7-2 奈米壓痕之基本原理..................39   2-7-3 連續剛性量測之原理與系統架構........42 第三章 實驗步驟與方法.........................46  3-1 實驗流程................................46  3-2 實驗材料................................50  3-3 實驗設備................................51   3-3-1 反應式磁控共濺鍍系統................51   3-3-2 溼式熱氧化系統......................52   3-3-3 快速退火爐..........................54  3-4 分析檢測儀器............................57   3-4-1 表面粗度儀..........................57   3-4-2 四點探針............................58   3-4-3 低掠角X光繞射儀.....................59   3-4-4 掃描式電子顯微鏡....................60   3-4-5 原子力顯微鏡........................62   3-4-6 能量散佈光譜儀......................63   3-4-7 歐傑電子能譜儀......................65   3-4-8 X光光電子能譜儀.....................66   3-4-9 奈米壓痕器..........................67 第四章 結果與討論.............................70  4-1 初鍍Ta-Si-N奈米複合薄膜基本性質.........70   4-1-1 反應濺鍍速率與電阻率................70   4-1-2 微結構與晶粒大小....................75   4-1-3 表面形貌分析........................79   4-1-4 化學成份分析........................89   4-1-5 機械性質分析........................95  4-2 Ta-Si-N奈米複合薄膜的熱穩定性...........100   4-2-1 微結構分析............................100   4-2-2 表面形貌分析........................107   4-2-3 化學成份分析........................119   4-2-4 機械性質分析........................123 第五章 結論與未來展望.........................126  5-1 結論....................................126  5-2 未來展望................................127 參考文獻 ......................................128

    [1] 呂宗昕, “圖解奈米科技與光觸媒”, 商周出版,2003
    [2] 張立德、牟季美,“奈米材料和奈米結構“,滄海書局,2002.
    [3] H. Gleiter, “On the structure of grain boundaries in metals”, Materials Science Engineering 52, pp. 91. 1982.
    [4] J.P. chu, C.L. Chiang, T. Mahalingam, and T.G. Nieh, “Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5 at 700K”, Scripta Materialia 49, pp. 435, 2003.
    [5] C. Fan, C. Li, and A. Inoue, “Defomation behavior of Zr-based bulk nanocrystalline amorphous alloys”, Physics Review B61, pp. R3761, 2001.
    [6] A.A. Voevodin, J.S. Zabinski, and C. Muratore, “Recent advances in hard, tough, and low friction nanocomposite coatings”, Tsinghua Science and Technology 10, pp. 665, 2005.
    [7] W.D. Sproul, “New routes in the preparation of mechanically hard films”, Science 273, pp.889, 1996.
    [8] S.Veprek and S.Reiprich, “A concept for the design of novel superhard coating” Thin Solid Films 268, pp.64, 1995.
    [9] J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp. 322, 2000.
    [10] S.C. Tjong, and H. Chen, “Nanocrystalline materials and coatings”, Materials Science and Engineering R 45, pp. 1, 2004.
    [11] S. PalDey, and S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review”, Materials Science and Engineering A 342, pp. 58, 2003.
    [12] M.-A. Nicolet, P.H. Giauque, “Highly metastable amorphous or near-amorphous ternary films (mictamict alloys)”, Materials Science and Engineering 55, pp. 357, 2001.
    [13] B. Chapman, “Glow discharge processes: sputtering and plasma etching”, John Wiley & Sons, Inc, New York, pp. 49 1980.
    [14] J.R. Roth , “Industrial plasma engineering- volume 1: principles”, Institute of physics publishing , London, 1995.
    [15] H. Conrads and M. Schmidt, “Plasma generation and plasma sources”, Plasma sources Science and Technology 9, pp. 441, 2000.
    [16] A. Grill, “Cold plasma in materials fabrication”, IEEE press, New York, 1994.
    [17] T. Takagi, “Ion-surface interactions during thin film deposition”, Journal of Vacuum Technology A2, pp.382, 1984.
    [18] D.M. Mattox, “Deposition technology for films and coating”, Noyes publications, Park Ridge, New Jersey, USA, 1982.
    [19] S.M. Rossnagel, “Handbook of plasma processing technology”, Noyes publications, Park Ridge, New Jersey, USA, 1989.
    [20] 莊達人,“VLSI製造技術”高立圖書出版,2002.
    [21] G. E. Dieter, “Mechanical Metallurgy”, McGraw-Hill , 1988.
    [22] S. Yip, “Nanocrystals: The strongest size”, Nature 391, pp.532, 1998.
    [23] R.W. Siegel and G.E. Fougere, “Mechanical properties of nanophase metals”, Nanostructured Materials 6, pp.205, 1995.
    [24] J. Schiotz and K.W. Jacobsen,” A Maximum in the strength of nanocrystalline copper ”, Science 301, pp. 1357, 2003.
    [25] J.S. Koehler, “Attempt to design a strong solid”, Physical review B 2, pp. 541, 1970.
    [26] H. Holleck, and V. Schier, “Multilayer PVD coatings for wear protection”, Surface and Coatings Technology 76-77, pp. 328, 1995.
    [27] S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size”, Thin Solid Films 297, pp. 145, 1997.
    [28] S. Veprek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films 317, pp. 449, 1998.
    [29] S. Veprek, “Different approaches to superhard coating and nanocomposites”, Thin Solid Films 476, pp. 1, 2005.
    [30] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167, pp. 113, 2003.
    [31] R.B. Barna, M. Adamik, J. Labar, L. Kover, J. Toth, A. Devenyi, and R. Manaila, “Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction”, Surface and Coatings Technology 125, pp. 147, 2000.
    [32] J. Musil, F. Kunc, H. Zeman, and H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings”, Surface and Coatings Technology 154, pp. 304, 2002.
    [33] E. Kolawa, J.M. Molarius, C.W. Nieh, and M.A. Nicolet, “Amorphous Ta-Si-N thin film alloy as diffusion barrier in Al/Si interconnections”, Journal of Vacuum Science Technology A 8, pp. 3006, 1990.
    [34] J.S. Reid, E. Kolawa, C.M. Garland, and M.A. Nicolet, “Amorphous (Mo, Ta, or W)-Si-N diffusion barriers for Al metallization”, Journal of Apply Physics 79, pp. 1109, 1996.
    [35] M. Oizumi, “Control of crystalline structure and electrical properties of TaSiN thin film formed by reactive RF-sputtering,” Japan Journal of Apply Physic 39, pp. 1291, 2000.
    [36] L. W. Lai et al, “Influence of Ta/Si atomic ratio on the interdiffusion between TaSiN and Cu at elevated temperature, “Journal of Apply Physics 94, pp. 5396, 2003.
    [37] J. W. Nah, S. K. Hwang, and C. M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physics 62, pp. 115, 2000.
    [38] J. W. Nah, W. S. Choi, S.K. Hwang, C.M. Lee, “Chemical state of (Ta, Si) N reactively sputtered coating on a high-speed steel substrate”, Surface and Coatings Technology 123, pp. 1, 2000.
    [39] T. Hara, M. Tanaka, K. Sakiyama, and S. Omishi, “Barrier properties for oxygen diffusion in a Ta-Si-N layer”, Japan Journal of Apply Physics 36, pp. L895, 2002.
    [40] C. Linder, A. Dommann, G. Staufert, and M.-A. Nicolet, “Ternary Ta-S-N films for sensors and actuators”, Sensors and Actuators A 61, pp. 387, 1997.
    [41] J. Vandooren, A. barr, L. Mathew, T.R. Whites, S. Egley, D. Pham, M. Zavala, S. Samavedam, J. Schaeffer, J. Conner, B.Y. Nguyen, B.E. White, “Fully-depleted SOI devices with TaSiN gate HfO2 gate dielectric, and elevated source/drain extensions”, IEEE Electron Device Letters 24, pp. 342, 2003.
    [42] M. Pekarcikova, S. Menzel, D. Reitz, H. Schmidt, and K.Wetzig, “Investigation of high performance Ta-Si-N/ Cu/ Ta-Si-N metallization system for SAW devices”, Microelectronic Engineering 82, pp. 607, 2005.
    [43] 汪建民,”材料分析”, 中國材料科學學會,1998.
    [44] Tery L. Barr, “Modern ESCA: the principles and practice of X-Ray photoelectron spectroscopy”, CRC press, 1994.
    [45] NT-MDT Corp., SPM introduction, http://www.ntmdt.ru
    [46] W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research 7, No. 6, pp. 1564, 1992.
    [47] 施孟君, 何恕德, 林鶴南, “基材效應對薄膜奈米壓痕量測之影響”, 中國材料學會年會論, 2002.
    [48] B.D. Fabes, W.C. Oliver, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations”, Journal of Materials Research 7, No. 11, pp. 3056, 1992.
    [49] Ranjana Saha, William D.Nix, “Effect of substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materials 50, pp. 23, 2002.
    [50] S. Veprek, Ali S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, pp. 175, 2001.
    [51] J. Musil, F. Kunc, H. Zeman, H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposites coatings”, Surface and Coatings Technology 154, pp. 304, 2002.
    [52] Q. Ma and D.R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research 10, pp. 853, 1995
    [53] M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, Ph. Houdy, and J.L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films”, Journal of Applied Physics 87, pp.7753, 2000.
    [54] X. Li, B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization 48, pp.11, 2002.
    [55] F.M. Borodich, L. M. Keer and C.S. Korach, “Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes”, Nanotechnology 14, pp.803, 2003.
    [56] Nano Indenter XP user’s manual, MTS, 2001.
    [57] R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K. Wetzig, H.-J. Engelmann, E. Zschech, H. Heuer, Ch. Wenzel, “Influence of nitrogen content on the crystallization behavior of thin Ta–Si–N diffusion barriers“, Thin Solid Films 468, pp. 183, 2004.

    下載圖示 校內:2008-07-25公開
    校外:2008-07-25公開
    QR CODE