簡易檢索 / 詳目顯示

研究生: 許智韋
Xu, Zhi-Wei
論文名稱: 二階順滑模態平衡控制之倒單擺系統
Balance Control of an Inverted Pendulum System Using Second-Order Sliding Mode Control
指導教授: 何明字
He, Ming-Zi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 160
中文關鍵詞: 二階順滑模態控制倒單擺線性馬達
外文關鍵詞: Second Order Sliding Mode Control, Inverted Pendulum, Linear Motor
相關次數: 點閱:117下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 倒單擺系統為一種構造簡單、響應快速、不穩定之非線性系統,故學術領域常用來驗證各種先進的控制理論。在本論文中探討以線性馬達為致動器,並以不同之控制器法則,達到倒單擺之平衡控制。本論文先以Euler-Lagrange方法對倒單擺系統建立動態數學模型,再依此模型設計LQR (Linear Quadratic Regulator)控制器、傳統順滑模態控制器以及二階順滑模態控制器,接著利用MATLAB/Simulink軟體進行模擬,最後將各自模擬結果互相比較。在實作上,本系統使用德州儀器公司(Texas Instruments, TI)所生產的數位訊號處理器TMS320F28335做為控制核心以實現倒單擺之平衡控制的目的。藉由模擬與實作結果得知,二階順滑模態控制具有較佳的性能及強健性。

    The inverted pendulum system is a simple, fast, unstable and nonlinear system. It is commonly used as a testbed for studying many advanced control theory. This thesis considers the problems of controlling an inverted pendulum actuated by a linear motor. Different control schemes are used to design the stabilizing controllers. In this thesis, the Euler-Lagrange method is used to derive the dynamic model of the inverted pendulum system. The LQR (Linear Quadratic Regulator) control law, first-order sliding mode control law and second order sliding mode control law are then designed to achieve balance control of this system. The MATLAB/Simulink software is used to conduct the simulation. In the experiments, control laws are implemented through a digital signal processor (TMS320F28335) produced by Texas Instruments. The effectiveness of the control schemes are verified and validated through experimental and simulation studies. It is shown that second-order sliding mode control has better performance and robustness.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅷ 第一章 緒論 1-1研究背景及動機 1-1 1-2研究目的 1-1 1-3 研究步驟 1-2 1-4 相關文獻探討 1-4 1-5 論文結構 1-4 第二章 倒單擺與線性馬達數學模型 2-1前言 2-1 2-2一節倒單擺系統數學模型之建立 2-1 2-3二節倒單擺系統數學模型之建立 2-9 2-4線性馬達數學模型 2-17 2-5線性馬達參數 2-18 第三章 傳統順滑模態控制理論之探討 3-1 前言 3-1 3-2 順滑模態之介紹 3-1 3-3 順滑條件與迫近條件之探討 3-2 3-4 傳統順滑模態控制器之設計方法 3-4 3-5滑動層的考量 3-7 3-6 非線性機電系統之順滑模態控制設計方法 3-8 第四章 二階順滑模態控制理論之探討 4-1 前言 4-1 4-2 一階與二階順滑模態控制理論比較 4-2 4-3二階順滑模態控制設計方法 4-2 4-3-1 螺旋控制器 4-4 4-3-1-1 穩定度分析 4-5 4-3-1-2 有限時間內收斂分析 4-18 4-3-2 次最佳化控制器 4-20 4-3-2-1 穩定度分析 4-21 4-3-2-2 有限時間內收斂分析 4-30 4-3-3 超螺旋控制器 4-32 4-3-3-1 穩定度及有限時間內收斂分析 4-33 第五章 平衡控制器設計與模擬結果 5-1 前言 5-1 5-2 完整模型與近似模型 5-2 5-3 一節倒單擺系統LQR平衡控制器設計 5-4 5-4 一節倒單擺系統LQR平衡控制模擬結果 5-9 5-5 一節倒單擺系統一階順滑模態平衡控制器設計 5-10 5-6 一節倒單擺系統一階順滑模態平衡控制模擬結果 5-17 5-7 一節倒單擺系統二階順滑模態平衡控制器設計 5-18 5-8 一節倒單擺系統二階順滑模態平衡控制模擬結果 5-20 5-9 二節倒單擺系統LQR平衡控制器設計 5-24 5-10二節倒單擺系統LQR平衡控制模擬結果 5-29 5-11二節倒單擺系統傳統順滑模態平衡控制器設計 5-31 5-12二節倒單擺系統傳統順滑模態平衡控制模擬結果 5-33 5-13二節倒單擺系統二階順滑模態平衡控制器設計 5-35 5-14二節倒單擺系統二階順滑模態平衡控制模擬結果 5-36 5-15模擬響應之性能比較 5-38 第六章 倒單擺系統機構設計 6-1前言 6-1 6-2倒單擺長度與穩定度分析 6-1 6-3整體機構之設計 6-4 第七章 系統控制核心晶片與周邊電路介紹 7-1前言 7-1 7-2控制核心晶片與模組 7-2 7-2-1 數位訊號處理器TMS320F28335 7-2 7-2-2 正交編碼脈衝(Quadrature Encoder Pulse, QEP)介面 7-3 7-2-3 脈衝寬度調製(Pulse Width Modulation, PWM)介面 7-4 7-2-4 通用型輸入/輸出(General Purpose I/O, GPIO)介面 7-4 7-2-5 PWM電壓位準提升與隔離電路 7-5 7-3馬達變頻驅動模組 7-5 7-4回授感測電路模組 7-6 7-4-1 電流感測電路 7-6 7-4-2 電壓感測電路 7-7 第八章 平衡控制實作結果 8-1前言 8-1 8-2系統整體架構 8-1 8-3 系統程式流程及整體控制系統架設 8-1 8-4 控制器平衡實作結果 8-4 第九章 結論與未來展望 9-1結論 9-1 9-2未來展望 9-1 參考文獻 Ref-1 附錄A APP-1

    [1] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, CRC Press, Boca Raton, 1999.
    [2] S. V. Emlyanov, S. K. Korovin, A. Levantovsky, and A. Levant, “Higher Order Sliding Modes in the Binary Control Systems,” Soviet Phys., Doklady, Vol. 31, pp. 291–293, 1986.
    [3] J. F. Schaefer and R. H. Cannon, “On the Control of Unstable Mechanical Systems,” Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1, 6C.1-6C.13, 1967.
    [4] J. Collado, R. Lozano, and I. Fantoni, “Cotrol of Convey-Crane Based on Passivity,” Proceedings of the American Control Conference, pp. 1260-1264, 2000.
    [5] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
    [6] M. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,” Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 1, pp. 555-556, 1995.
    [7] O. S. Reza, “Global Stabilization of a Flat Underactuated System: The Inertia Wheel Pendulum,” Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 4, pp. 3764-3765, 2001.
    [8] G. Bartolini, A. Ferrara, A. Levant, and E. Usai, “On Second Order Sliding Mode Controllers,” in Lecture Notes in Control and Information Sciences, K. D. Young and U. Ozguner, Eds. Berlin, Germany: Springer-Verlag, Vol. 247, Variable Structure Systems, Sliding Mode and Nonlinear Control, pp. 329–350, 1999.
    [9] A. Levant, “Sliding Order and Sliding Accuracy in Sliding Mode Control,” Int. J. Control, Vol. 58, pp. 1247–1263, 1993.
    [10] G. Bartolini, A. Ferrara, and E. Usai, “Applications of a Sub-Optimal Discontinuous Control Algorithm for Uncertain Second Order Systems,” Int. J.of Robust and Nonlinear Control, Vol. 7, pp. 299-319, 1997.
    [11] G. Bartolini, A. Ferrara, and E. Usai, “Chattering Avoidance by Second-Order Sliding Mode Control,” IEEE Trans. Automat. Control, Vol. 43, No. 2, pp. 241-246, 1998.
    [12] A. Pisano, Sliding Mode Control: Theoretical Developments and Applications to Uncertain Mechanical Systems, Universita degli Studi di Pavia, 2008.
    [13] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.P. Richard, “Second Order Sliding Mode Control of Underactuated Mechanical Systems I: Local Stabilization with Application to an Inverted Pendulum,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 529-543, 2008.
    [14] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.P. Richard, “Second Order Sliding Mode Control of Underactuated Mechanical Systems II: Orbital Stabilization of an Inverted Pendulum with Application to Swing Up/Balancing Control,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 544-556, 2008.
    [15] 蕭景隆,「線性馬達驅動控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一百零三年。
    [16] 蕭天賜,「以數位訊號處理器為基礎之多功能控制平台的研製」,國立成功大學工程科學系碩士論文,民國九十五年。
    [17] 杜俊誼,「以能量為基礎之雙連桿倒單擺系統甩上平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年。
    [18] 邱萬鍾,「以全向移動機器人為致動器之二維倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
    [19] 李岳翰,「以全向移動機器人為致動器之旋轉型倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國一百年。
    [20] J. Rivera, L. Garcia, C. Mora, J. J. Raygoza, and S. Ortega, “Super-Twisting Sliding Mode in Motion Control Systems,” Sliding Mode Control, InTech, pp. 237-254, 2011.
    [21] Y. Shtessel, F. Plestan, and M. Taleb, “Lyapunov Design of Adaptive Super-Twisting Controller Applied to a Pneumatic Actuator,” Preprints of the 18th IFAC World Congress, Vol. 18, No. 1, pp. 3051-3056, 2011.
    [22] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman, and A. S. Poznyak, “Super-twisting Adaptive Sliding Mode Control: a Lyapunov Design,” 49th IEEE Conference on Decision and Control, pp. 5109-5113, 2010
    [23] A. Levant, “Homogeneity Approach to High-Order Sliding Mode Design,” Automatica, Vol. 41, No. 5, pp. 823-830, 2005.

    下載圖示 校內:2019-02-14公開
    校外:2021-03-01公開
    QR CODE