| 研究生: |
許智韋 Xu, Zhi-Wei |
|---|---|
| 論文名稱: |
二階順滑模態平衡控制之倒單擺系統 Balance Control of an Inverted Pendulum System Using Second-Order Sliding Mode Control |
| 指導教授: |
何明字
He, Ming-Zi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 二階順滑模態控制 、倒單擺 、線性馬達 |
| 外文關鍵詞: | Second Order Sliding Mode Control, Inverted Pendulum, Linear Motor |
| 相關次數: | 點閱:117 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
倒單擺系統為一種構造簡單、響應快速、不穩定之非線性系統,故學術領域常用來驗證各種先進的控制理論。在本論文中探討以線性馬達為致動器,並以不同之控制器法則,達到倒單擺之平衡控制。本論文先以Euler-Lagrange方法對倒單擺系統建立動態數學模型,再依此模型設計LQR (Linear Quadratic Regulator)控制器、傳統順滑模態控制器以及二階順滑模態控制器,接著利用MATLAB/Simulink軟體進行模擬,最後將各自模擬結果互相比較。在實作上,本系統使用德州儀器公司(Texas Instruments, TI)所生產的數位訊號處理器TMS320F28335做為控制核心以實現倒單擺之平衡控制的目的。藉由模擬與實作結果得知,二階順滑模態控制具有較佳的性能及強健性。
The inverted pendulum system is a simple, fast, unstable and nonlinear system. It is commonly used as a testbed for studying many advanced control theory. This thesis considers the problems of controlling an inverted pendulum actuated by a linear motor. Different control schemes are used to design the stabilizing controllers. In this thesis, the Euler-Lagrange method is used to derive the dynamic model of the inverted pendulum system. The LQR (Linear Quadratic Regulator) control law, first-order sliding mode control law and second order sliding mode control law are then designed to achieve balance control of this system. The MATLAB/Simulink software is used to conduct the simulation. In the experiments, control laws are implemented through a digital signal processor (TMS320F28335) produced by Texas Instruments. The effectiveness of the control schemes are verified and validated through experimental and simulation studies. It is shown that second-order sliding mode control has better performance and robustness.
[1] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, CRC Press, Boca Raton, 1999.
[2] S. V. Emlyanov, S. K. Korovin, A. Levantovsky, and A. Levant, “Higher Order Sliding Modes in the Binary Control Systems,” Soviet Phys., Doklady, Vol. 31, pp. 291–293, 1986.
[3] J. F. Schaefer and R. H. Cannon, “On the Control of Unstable Mechanical Systems,” Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1, 6C.1-6C.13, 1967.
[4] J. Collado, R. Lozano, and I. Fantoni, “Cotrol of Convey-Crane Based on Passivity,” Proceedings of the American Control Conference, pp. 1260-1264, 2000.
[5] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
[6] M. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,” Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 1, pp. 555-556, 1995.
[7] O. S. Reza, “Global Stabilization of a Flat Underactuated System: The Inertia Wheel Pendulum,” Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 4, pp. 3764-3765, 2001.
[8] G. Bartolini, A. Ferrara, A. Levant, and E. Usai, “On Second Order Sliding Mode Controllers,” in Lecture Notes in Control and Information Sciences, K. D. Young and U. Ozguner, Eds. Berlin, Germany: Springer-Verlag, Vol. 247, Variable Structure Systems, Sliding Mode and Nonlinear Control, pp. 329–350, 1999.
[9] A. Levant, “Sliding Order and Sliding Accuracy in Sliding Mode Control,” Int. J. Control, Vol. 58, pp. 1247–1263, 1993.
[10] G. Bartolini, A. Ferrara, and E. Usai, “Applications of a Sub-Optimal Discontinuous Control Algorithm for Uncertain Second Order Systems,” Int. J.of Robust and Nonlinear Control, Vol. 7, pp. 299-319, 1997.
[11] G. Bartolini, A. Ferrara, and E. Usai, “Chattering Avoidance by Second-Order Sliding Mode Control,” IEEE Trans. Automat. Control, Vol. 43, No. 2, pp. 241-246, 1998.
[12] A. Pisano, Sliding Mode Control: Theoretical Developments and Applications to Uncertain Mechanical Systems, Universita degli Studi di Pavia, 2008.
[13] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.P. Richard, “Second Order Sliding Mode Control of Underactuated Mechanical Systems I: Local Stabilization with Application to an Inverted Pendulum,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 529-543, 2008.
[14] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.P. Richard, “Second Order Sliding Mode Control of Underactuated Mechanical Systems II: Orbital Stabilization of an Inverted Pendulum with Application to Swing Up/Balancing Control,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 544-556, 2008.
[15] 蕭景隆,「線性馬達驅動控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一百零三年。
[16] 蕭天賜,「以數位訊號處理器為基礎之多功能控制平台的研製」,國立成功大學工程科學系碩士論文,民國九十五年。
[17] 杜俊誼,「以能量為基礎之雙連桿倒單擺系統甩上平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年。
[18] 邱萬鍾,「以全向移動機器人為致動器之二維倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
[19] 李岳翰,「以全向移動機器人為致動器之旋轉型倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國一百年。
[20] J. Rivera, L. Garcia, C. Mora, J. J. Raygoza, and S. Ortega, “Super-Twisting Sliding Mode in Motion Control Systems,” Sliding Mode Control, InTech, pp. 237-254, 2011.
[21] Y. Shtessel, F. Plestan, and M. Taleb, “Lyapunov Design of Adaptive Super-Twisting Controller Applied to a Pneumatic Actuator,” Preprints of the 18th IFAC World Congress, Vol. 18, No. 1, pp. 3051-3056, 2011.
[22] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman, and A. S. Poznyak, “Super-twisting Adaptive Sliding Mode Control: a Lyapunov Design,” 49th IEEE Conference on Decision and Control, pp. 5109-5113, 2010
[23] A. Levant, “Homogeneity Approach to High-Order Sliding Mode Design,” Automatica, Vol. 41, No. 5, pp. 823-830, 2005.