| 研究生: |
蕭涵 Hsiao, Han |
|---|---|
| 論文名稱: |
即時淺層邊坡滑動無線監測模組之研發 Development of real-time wireless sensing module for shallow landslides |
| 指導教授: |
張文忠
Chang, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 淺層邊坡破壞 、非飽和土壤 、無線監測模組 、體積含水量量測 、傾斜角量測 、現地入滲速率 |
| 外文關鍵詞: | shallow slope failure, unsaturated soil, wireless sensing module, volumetric water content sensing, tilt sensing, in-situ hydraulic conductivity |
| 相關次數: | 點閱:130 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以微機電系統感測器,研發具備土壤分層含水量與地表傾角量測功能之土層監測模組,結合無線通訊功能建立網路傳輸架構,於選定之監測場址形成分布式淺層邊坡感測網絡,並透過WCDMA(3G)技術即時上傳現地監測資訊至遠端伺服器,搭配太陽能電源系統,達到系統全自動化、現地即時資訊、長期監測等目標。由含水量監測結果與雨量測站資料做比對,顯示系統可即時反應現地降雨事件,且由非飽和土層入滲剖面可了解土層滲流情況,並估算現地淺層土壤之入滲速率。未來可結合發展完備之解析法,作為邊坡破壞預警系統之雛形,改善目前以雨量監測為指標之經驗法邊坡破壞預警模式。
To improve the limitations of rainfall-based slope warning system, slope monitoring module for shallow landslides based on micro-electro-mechanical system is developed. The target failure mode is shallow slope that failure surface occur in unsaturated zone and trigger by rainfall infiltration. Monitoring module provided wireless communication and real-rime sensing of shallow slope respond including volumetric water content profile and ground tilt angle to form distributed wireless sensing network. Combined with WCDMA(3G) technique, sensing module synchronized to remote server by connection to global network. Fully automated system and long-term monitoring can be achieve through solar energy. Monitoring results show that change of water content fit rainfall event and can be utilized to estimate in-situ hydraulic conductivity.
1. 邱永芳、黃安斌、饒 正、李瑞庭、陳志芳、何彦德 (2011),全光纖式邊坡穩定監測系統整合與現地應用測試 (4/4),交通部運輸研究所。
2. 黃信博(2016),應用非飽和單剪於降雨入滲引致淺層邊坡滑動模擬之研究,碩士論文,國立成功大學土木工程研究所。
3. 張志彰(2006) ,「網格技術在山區道路邊坡雨量觀測之研究-以GPRS無線傳輸方法為例」,碩士論文,國立臺灣科技大學營建工程系。
4. 趙慶宇(2015),淺層非飽和邊坡破壞機制之研究,碩士論文,國立成功大學土木工程研究所。
5. Bishop, W. (1959). “The principle of effective stress.”, Lecture delivered in Oslo, Norway, 1955; published in Technisk Ukeblad, 106(39), pp. 859-863.
6. Cascini, L., Cuomo, S., Pastor M, and Giuseppe Sorbino, G. (2010). “Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type.” Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 85-98.
7. Chong C.Y. ,Kumar, S. P. (2003). “Sensor networks: Evolution, opportunities, and challenges. ” Proc. IEEE, August.
8. Collins, B.D., and Znidarcic, D. (2004). “Stability analyses of rainfall induced landslides.” Journal of Geotechnical and Geoenvironmental Engineering, 130, 362–372.
9. Fell, J. W., Boekhout T., Fonseca A., Scorzetti G. and StatzellTallman A. (2000). “Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis.” Int J Syst Evol Microbiol 50, 1351–1371.
10. Fredlund, D. G. and Morgenstern, N. R. (1977). “Stress state variables for unsaturated soils. ”Journal of Geotechnical Engineering Division, ASCE, 103(5), pp.447-466.
11. Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). “The shear strength of unsaturated soils.” Canadian Geotechnical Journal, 15(3), pp.313-321.
12. Fredlund, D. G. and Rahardjo, H. (1993). “Soil mechanics for unsaturated soils. ”New York, Wiley.
13. Fredlund D. G., Xing A., Fredlund M. D. and Barbour S. L. (1995). “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Canadian Geotechnical Journal, 32(3), pp.440-448.
14. Gan K. M., Fredlund D. G. and Rahardjo H. (1988). “Determination of shear strength parameters of an unsaturated soil using the direct shear test.” Canadian Geotechnical Journal, 25(3), pp.500-510.
15. Hamilton J. M., Daniel D. E., and Olson R. E. (1981), “Measurement of Hydraulic Conductivity of Partially Saturated Soils.” Permeability and Groundwater Contaminant Transport, ASTM Special Tech. Publ. 746, T. F. Zimmie and C. 0. Riggs, Eds., ASTM, pp. 182-196.
16. Hillel D., Krentos V. D., and Stylianou Y. (1972), “Procedure and Test of an Internal Drainage Method for Measuring Soil Hydraulic Characteristics In-Situ.” Soil Sci., vol. 114, pp. 295-400.
17. Krahn, J. and Fredlund, D. G. (1972). “On total matric and osmatic suction.” Journal of Soil Science, 114(5), pp.339-348.
18. Oloo, S. Y. and Fredlund, D. G. (1996). “A method for determination of b for statically compacted soils.” Canadian Geotechnical Journal, 33, pp.272-280
19. Osanai, N., Tomita, Y., Akitama, K.,Matsushita, T. (2009). “Reality of cliff failure disaster.” Technical Note of National Institute for Land and Infrastructure Management, No. 530 (in Japanese)
20. Renwick, W., Brumbaugh, R.,and Loeher, L., (1982), “Landslide Morphology and Processes on Santa cruz Island.” California: Geografiska Annaler, v. 64 A, p. 149-159.
21. Santacana N., De Paz A., Baeza B., Corominas J., and Marturi J. (2003) “A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain).” Nat Hazards 30(3):281–295
22. Springman S. M., Thielen A., Kienzler P. and Friedel S. (2013). “A long-term field study for the investigation of rainfall-induced landslides.” Ge´otechnique 63, No. 14, 1177–1193
23. Terzaghi, K. (1936). “The shear resistance of saturated soils.”, Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, 1, pp.54-56
24. Tohari A., Nishigaki M. and Komatsu M. (2007). “Laboratory rainfall-induced slope failure with moisture content measurement.” J. Geotech. Geoenviron. Eng., 2007, 133(5): 575-587
25. Uchimura T, Towhata I, Wang L and Seko I. (2008). “Simple and low-cost wireless monitoring units for slope failure. ” In: Proc. of the First World Landslide Forum, International Consortium on Landslides (ICL), Tokyo, pp. 611–614.
26. Varnes D. J. (1978). “Slope movement types and processes.” In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.), Transportation and Road Research Board, National Academy of Science, Washington D. C., 11-33