簡易檢索 / 詳目顯示

研究生: 邱薏潔
Chiu, I-Chieh
論文名稱: 氣候變遷與都市發展對洪災危害度之空間區位影響探討―以臺北市為例
Exploring the Spatial Impact of Climate Change and Urban Development on Flood Hazard―A Case Study of Taipei City, Taiwan
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 161
中文關鍵詞: 氣候變遷都市發展土地利用變遷模擬淹水模擬都市洪災風險
外文關鍵詞: Climate change, urban development, land-use change simulation, flood simulation, urban flood risk
相關次數: 點閱:98下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氣候變遷加劇,極端降雨事件頻傳,洪患成為現今面臨重要課題之一。依據減少災害風險辦公室 (UNISDR)及國際災害資料庫(EM-DAT)報告綜合顯示,自然災害中與水相關之災害機率高達四成之多,洪災被視為全球所有自然災害中代價最高且最具破壞性。尤其於建成地飽和之高密度城市,氣候變遷下產生的脆弱性,創造韌性耐災環境與提升社會經濟效益已成為永續發展之關鍵議題。然而,許多研究陸續指出「氣候變遷」及「都市發展」現象可能會改變洪水的嚴重性,並影響洪水管理的決策過程,且兩者不同驅動力影響會反映出長期與短期的關係,加上既有研究多為混合或單一簡化討論都市發展或氣候變遷可能對洪災的影響。未來都市化及氣候變遷引發的洪水衝突將更為顯著,將嚴重影響環境及社會發展,需迫切瞭解兩者分別產生的洪災影響區位,及探討具減災效能之土地政策情境,試圖釐清並提供既有政策相關防洪之建議。
    鑑於上述,本研究以臺北市作為實證範圍,借鑒過去文獻中的缺口與相關研究方法,建立研究的設計框架與適用模型。本研究將建置土地利用變遷模型及淹水模擬之模型。土地利用模型分別利用2006年、2015年及2021年檢定及驗證模型,以校準過程提高模型可信度及解釋力,接續得以模擬目標年期2050年之土地利用情形。淹水模擬則中考慮不同土地利用情境,情境設定中同步考慮地方現行推動政策(防災型都市更新),將其納入其中一種情境設定。模擬年期共分為1995年、2021年、2050年情境一及2050年情境二,透過上述兩者模型交叉分析與疊圖討論,以反映不同時期之淹水區位,藉此釐清氣候變遷與都市發展不同驅動力對洪災影響之區位差異,並比較不同土地利用情境於未來極端氣候下(RCP8.5氣候情境)產生的洪災風險分析。
    研究成果顯示,不同驅動力確實反映不同之影響關係。都市發展淹水區位為不可知且擴散式影響,初判為因發展過程中環境錯亂影響,淹水隨之有多種變化的可能性;而氣候變遷影響區位則為集中式影響,僅於原脆弱度相對低的地區受到更嚴重的影響,其他地區無太大的變化。然而,情境模擬比較上,研究範圍各行政區淹水深度面積及區位,於情境二(防災都更實施完成)皆比情境一(依循過去)呈現減少趨勢,表示以最理想狀態進行,將符合防災都更範圍轉為綠地使用,能達到預期之減災成效。藉由本研究探討釐清不同驅動力影響及納入政策情境模擬淹水變化,更準確評估潛在洪災風險影響程度與區位,以提供未來都市發展政策於不同影響區域制定對應策略之參考。

    The impact of climate change on urban areas has become increasingly severe in recent years. However, previous studies have consistently demonstrated that the driving forces behind flooding include both "climate change" and "urban development." Often, discussions in the past have mixed or simplified these factors, potentially overlooking the complex impacts on flooding. However, these two driving forces actually reflect both long-term and short-term effects on flooding. Therefore, it is necessary to clarify and propose different flood prevention strategies in response to these influences.
    This study selects Taipei City as the empirical scope and establishes two major models: a land-use change model and a flood simulation model. Firstly, both models undergo a calibration process to enhance their credibility and explanatory power. Furthermore, after setting different scenarios, the target year for simulating the future is established as 2050. Through the cross-analysis and overlay of the aforementioned models, along with discussions using stacked charts, the study aims to reflect the flooded areas in different time periods. This approach clarifies the spatial differences in the impact of flood disasters resulting from the different driving forces of climate change and urban development. Additionally, the study compares the flood risk analysis under different land-use scenarios in the context of future extreme climate conditions.
    The research results indicate that flood-prone areas in urban development are unpredictable and exhibit diffuse impacts, preliminarily attributed to environmental chaos during the development process, leading to various potential flooding scenarios. The impact of climate change is concentrated, affecting only the originally vulnerable areas more severely, with minimal changes in other regions. However, scenario simulations show that after the implementation of disaster-resilient urban redevelopment, there is a decreasing trend in both the depth and locations of flooding across administrative districts, achieving the anticipated disaster reduction effects. In conclusion, the study results can serve as a reference for future urban development policy formulation, enabling a more accurate assessment of potential flood risks and the development of region-specific strategies.

    第一章、緒論 1 第一節、研究背景與動機 1 第二節、研究目的 2 第三節、研究內容與流程 3 第四節、研究範疇 5 第五節、名詞定義 6 第二章、文獻回顧 8 第一節、氣候變遷與都市發展對洪災之影響 8 第二節、都市洪災風險管理 13 第三節、都市土地利用變遷模擬之相關研究 22 第四節、都市淹水模擬之相關研究 29 第三章、研究設計 33 第一節、研究架構 33 第二節、都市發展影響之土地利用變遷模擬 37 第三節、氣候變遷影響之都市淹水模擬 49 第四節、模擬未來不同土地使用及氣候情境之洪災影響 65 第四章、實證結果與分析 67 第一節、都市土地利用變遷模擬 67 第二節、氣候情境之都市淹水模擬 79 第三節、都市發展與氣候變遷影響之淹水潛勢分析 99 第四節、比較不同土地利用情境於極端氣候之淹水模擬分析 108 第五章、結論與建議 115 第一節、研究結論 115 第二節、研究限制與後續建議 116 參考文獻 119 附錄 129

    中文文獻
    行政法人國家災害防救科技中心 (2017)CMIP5之模式挑選應用水資源領域。
    經濟部水利署水利規劃試驗所 (2017)區域排水規劃工具。https://www.wrap.gov.tw/cp.aspx?n=26286
    黃書禮(2020)。生態土地使用規劃。
    經濟部水利署水利規劃試驗所(2020)。出流管制技術手冊。
    國家災害防救科技中心(2020)。土地利用變遷模式建立與災害評估應用測試 。
    周天穎、簡甫任、雷祖強(2003)。都市地區土地利用變遷量化分析之研究。台灣土地研究, 第六卷第一期, 頁105-130。
    詹士梁、黃書禮、王思樺(2003)。台北地區洪水災害風險分區劃設之研究。都市與計劃, 30,4, 頁263 - 280。
    葉克家(2009)。都市地區淹水改善措施之效益評估研究--子計畫:都市地區淹水模式之評估與應用研究(I)研究成果報告(完整版)行政院國家科學委員會專題研究計畫。
    張文菘、陳嘉惠、張國楨(2017)。應用空間統計於桃園地區土地利用變遷因素分析。地理研究, 第67期。
    張曉娟、周啟剛、王兆林、王福海(2017)。基於MCE-CA-Markov的三峽庫區土地利用演變模擬及預測. Transactions of the Chinese Society of Agricultural Engineering, 33(19)。
    林怡甄(2008)。利用淹水模式評估不同暴雨及潮汐時高雄市之淹水潛勢。 國立高雄第一科技大學營建工程所碩士論文。高雄市。
    顧嘉安(2010)。以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─以台北市為例。 國立成功大學都市計劃學系碩士論文。臺南市。
    巫孟璇(2013)。地文性淹水即時預報模式之發展與應用 國立成功大學水利及海洋工程學系博士論文。臺南市。
    謝竺君. (2015)。颱洪災害之整合水患風險評估-以北港溪流域範圍為例。 國立成功大學都市計劃學系碩士論文。臺南市。
    陳柏霖(2018)。沿海都市地區洪災風險對土地利用型態影響之探討:以高雄市為例。 國立成功大學都市計劃學系碩士論文。臺南市。
    劉家彤 (2018)探討都市土地使用型態與淹水潛勢之空間關聯-以原臺中市為例。 國立臺北大學都市計劃研究所碩士論文。新北市。
    李晉安(2020)。嘉義沿海低地淹水調節策略-以嘉義縣北華村為例。 國立成功大學水利及海洋工程學系碩士論文。臺南市。
    張凱揚(2021)。二維SOBEK淹水模式應用以冬山河流域為例。 國立臺北科技大學土木工程系土木與防災碩士論文。臺北市。
    英文文獻
    Agarski, B., Budak, I., Kosec, B., & Hodolic, J. (2012). An approach to multi-criteria environmental evaluation with multiple weight assignment. Environmental Modeling & Assessment, 17(3), 255-266.
    Al Jabri, N., & Alhazmi, R. (2017). Observing and monitoring the urban expansion of Makkah Al-Mukarramah using the remote sensing and GIS. Engineering Sciences&Information Technology, 1(2), 125-103.
    Alberti, M., & Waddell, P. (2000). An integrated urban development and ecological simulation model. Integrated Assessment, 1(3), 215-227.
    Arnbjerg-Nielsen, K. (2012). Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design. Urban Water Journal, 9(2), 57-65.
    Arnone, E., Pumo, D., Francipane, A., La Loggia, G., & Noto, L. V. (2018). The role of urban growth, climate change, and their interplay in altering runoff extremes. Hydrological Processes, 32(12), 1755-1770.
    Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014). Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160-171.
    Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghighatafshar, S., Jönsson, K., Larsson, R., Mobini, S., Mottaghi, M., Nilsson, J., Nordström, J., Pilesjö, P., Scholz, M., Sternudd, C., Sörensen, J., & Tussupova, K. (2019). Drivers of changing urban flood risk: A framework for action. Journal of environmental management, 240, 47-56.
    Bevacqua, E., Maraun, D., Vousdoukas, M., Voukouvalas, E., Vrac, M., Mentaschi, L., & Widmann, M. (2019). Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science advances, 5(9), eaaw5531.
    Bianchini, S., Solari, L., Del Soldato, M., Raspini, F., Montalti, R., Ciampalini, A., & Casagli, N. (2019). Ground subsidence susceptibility (GSS) mapping in Grosseto Plain (Tuscany, Italy) based on satellite InSAR data using frequency ratio and fuzzy logic. Remote Sensing, 11(17), 2015.
    Birkmann, J. (2006). Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. Measuring vulnerability to natural hazards: Towards disaster resilient societies, 1, 9-54.
    Bosher, L., & Chmutina, K. (2017). Disaster risk reduction for the built environment. John Wiley & Sons.
    Bouwer, L. M., Bubeck, P., & Aerts, J. C. (2010). Changes in future flood risk due to climate and development in a Dutch polder area. Global Environmental Change, 20(3), 463-471.
    Budiyono, Y., Aerts, J. C., Tollenaar, D., & Ward, P. J. (2016). River flood risk in Jakarta under scenarios of future change. Natural hazards and earth system sciences, 16(3), 757-774.
    Chang, H., & Franczyk, J. (2008). Climate change, land‐use change, and floods: Toward an integrated assessment. Geography Compass, 2(5), 1549-1579.
    Chang, L.-F., Seto, K. C., & Huang, S.-L. (2013). Climate change, urban flood vulnerability, and responsibility in Taipei. In Urbanization and Sustainability (pp. 179-198). Springer.
    Cheng, J., & Masser, I. (2003). Urban growth pattern modeling: a case study of Wuhan city, PR China. Landscape and Urban Planning, 62(4), 199-217.
    Cho, S. Y., & Chang, H. (2017). Recent research approaches to urban flood vulnerability, 2006–2016. Natural hazards, 88(1), 633-649.
    Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242-261.
    Daksiya, V., Mandapaka, P. V., & Lo, E. Y. (2021). Effect of climate change and urbanisation on flood protection decision‐making. Journal of Flood Risk Management, 14(1), e12681.
    Dale, V. H. (1997). The relationship between land‐use change and climate change. Ecological applications, 7(3), 753-769.
    Dang, A. N., & Kawasaki, A. (2016). A review of methodological integration in land-use change models. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 7(2), 1-25.
    Dawson, R. J., Dickson, M. E., Nicholls, R. J., Hall, J. W., Walkden, M. J., Stansby, P. K., Mokrech, M., Richards, J., Zhou, J., & Milligan, J. (2009). Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Climatic Change, 95(1), 249-288.
    Dingman, S. L. (2015). Physical hydrology. Waveland press.
    Duan, W., Hanasaki, N., Shiogama, H., Chen, Y., Zou, S., Nover, D., Zhou, B., & Wang, Y. (2019). Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. Journal of Climate, 32(8), 2169-2183.
    Dwarakish, G., & Ganasri, B. (2015). Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1), 1115691.
    El-Jabi, N., Caissie, D., & Turkkan, N. (2016). Flood analysis and flood projections under climate change in New Brunswick. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 41(1-2), 319-330.
    Elmer, F., Hoymann, J., Düthmann, D., Vorogushyn, S., & Kreibich, H. (2012). Drivers of flood risk change in residential areas. Natural hazards and earth system sciences, 12(5), 1641-1657.
    Evans, E., Hall, J., Penning-Rowsell, E., Sayers, P., Thorne, C., & Watkinson, A. (2006). Future flood risk management in the UK. Proceedings of the Institution of Civil Engineers-Water Management,
    Feng, Y., Yang, Q., Hong, Z., & Cui, L. (2018). Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models. Geocarto international, 33(5), 470-488.
    Ferry, T. (2016). Is Taiwan Ready to Confront Climate Change? Taiwan Business TOPICS.
    Fonstad, M. A. (2006). Cellular automata as analysis and synthesis engines at the geomorphology–ecology interface. Geomorphology, 77(3-4), 217-234.
    Gori, A., Blessing, R., Juan, A., Brody, S., & Bedient, P. (2019). Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling. Journal of Hydrology, 568, 82-95.
    Hill, D. M. (1965). A Growth Allocation Model for the Eoston Region. Journal of the American Institute of Planners, 31(2), 111-120.
    Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821.
    Hoffman, S. M., Oliver-Smith, A., & Button, G. V. (2002). Catastrophe & culture: the anthropology of disaster. School of American Research Press.
    Hoseini, Y. (2019). Use fuzzy interface systems to optimize land suitability evaluation for surface and trickle irrigation. Information processing in agriculture, 6(1), 11-19.
    Huong, H. T. L., & Pathirana, A. (2013). Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrology and Earth System Sciences, 17(1), 379-394.
    Iacono, M., Levinson, D., El-Geneidy, A., & Wasfi, R. (2015). A Markov chain model of land use change. TeMA Journal of Land Use, Mobility and Environment, 8(3), 263-276.
    IPCC. (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge.
    IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
    IPCC. (2014). Impacts, adaptation, and vulnerability (Vol. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change). Cambridge University Press.
    IPCC. (2017). Climate change 2007-impacts, adaptation and vulnerability (M. L. Parry, Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C., Ed. Vol. Working group II contribution to the fourth assessment report of the IPCC(Vol. 4)). Cambridge University Press.
    Irwin, E. G., & Geoghegan, J. (2001). Theory, data, methods: developing spatially explicit economic models of land use change. Agriculture, Ecosystems & Environment, 85(1-3), 7-24.
    Janizadeh, S., Chandra Pal, S., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, A. H., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of environmental management, 298, 113551.
    Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and flooding: a guide to integrated urban flood risk management for the 21st century. World Bank Publications.
    Jongman, B., Ward, P. J., & Aerts, J. C. (2012). Global exposure to river and coastal flooding: Long term trends and changes. Global Environmental Change, 22(4), 823-835.
    Jongman, B., Winsemius, H. C., Aerts, J. C., Coughlan de Perez, E., Van Aalst, M. K., Kron, W., & Ward, P. J. (2015). Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of the National Academy of Sciences, 112(18), E2271-E2280.
    Jonkman, S., & Vrijling, J. (2008). Loss of life due to floods. Journal of Flood Risk Management, 1(1), 43-56.
    Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435-447.
    Karamouz, M., Hosseinpour, A., & Nazif, S. (2011). Improvement of urban drainage system performance under climate change impact: Case study. Journal of Hydrologic Engineering, 16(5), 395-412.
    Khoi, D. D., & Murayama, Y. (2010). Forecasting areas vulnerable to forest conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing, 2(5), 1249-1272.
    Kim, J.-C., Lee, S., Jung, H.-S., & Lee, S. (2018). Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto international, 33(9), 1000-1015.
    Koomen, E., Stillwell, J., Bakema, A., & Scholten, H. J. (2007). Modelling land-use change: Progress and applications (Vol. 90). Springer Science & Business Media.
    Lai, C., Chen, X., Wang, Z., Yu, H., & Bai, X. (2020). Flood risk assessment and regionalization from past and future perspectives at basin scale. Risk analysis, 40(7), 1399-1417.
    Lai, T., Dragićević, S., & Schmidt, M. (2013). Integration of multicriteria evaluation and cellular automata methods for landslide simulation modelling. Geomatics, Natural Hazards and Risk, 4(4), 355-375.
    Larsen, A., Gregersen, I. B., Christensen, O., Linde, J. J., & Mikkelsen, P. S. (2009). Potential future increase in extreme one-hour precipitation events over Europe due to climate change. Water Science and Technology, 60(9), 2205-2216.
    Li, G.-F., Xiang, X.-Y., Tong, Y.-Y., & Wang, H.-M. (2013). Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stochastic Environmental Research and Risk Assessment, 27(7), 1683-1693.
    Lin, C.-M. (2010). The influence and environmental meaning of urban heat island effect. Journal of Ecology and Environmental Sciences, 3(1), 1-15.
    Lin, C.-Y., & Tung, C.-P. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 28(1).
    Lin, W., Sun, Y., Nijhuis, S., & Wang, Z. (2020). Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Science of the Total Environment, 739, 139899.
    Liu, J., Shi, Z., & Wang, D. (2016). Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China. Natural hazards, 83(3), 1545-1565.
    Lu, Q., Chang, N.-B., Joyce, J., Chen, A. S., Savic, D. A., Djordjevic, S., & Fu, G. (2018). Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems, 68, 121-132.
    Mahmood, M. I., Elagib, N. A., Horn, F., & Saad, S. A. (2017). Lessons learned from Khartoum flash flood impacts: An integrated assessment. Science of the Total Environment, 601, 1031-1045.
    Mahmoud, S. H., & Gan, T. Y. (2018). Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Science of the Total Environment, 636, 152-167.
    Mallakpour, I., & Villarini, G. (2017). Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theoretical and Applied Climatology, 130(1), 345-363.
    Mandapaka, P. V., & Lo, E. Y. (2018). Assessment of future changes in Southeast Asian precipitation using the NASA Earth Exchange Global Daily Downscaled Projections data set. International Journal of Climatology, 38(14), 5231-5244.
    Matlhodi, B., Kenabatho, P. K., Parida, B. P., & Maphanyane, J. G. (2021). Analysis of the future land use land cover changes in the gaborone dam catchment using ca-markov model: Implications on water resources. Remote Sensing, 13(13), 2427.
    McColl, C., & Aggett, G. (2007). Land-use forecasting and hydrologic model integration for improved land-use decision support. Journal of environmental management, 84(4), 494-512.
    Meiyappan, P., Dalton, M., O’Neill, B. C., & Jain, A. K. (2014). Spatial modeling of agricultural land use change at global scale. Ecological Modelling, 291, 152-174.
    Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362.
    Mishra, B. K., Rafiei Emam, A., Masago, Y., Kumar, P., Regmi, R. K., & Fukushi, K. (2018). Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta. Journal of Flood Risk Management, 11, S1105-S1115.
    Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141-153.
    Mokarram, M., Pourghasemi, H. R., Hu, M., & Zhang, H. (2021). Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA-Markov model. Science of the Total Environment, 781, 146703.
    Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275-293.
    Moreno, N., Wang, F., & Marceau, D. J. (2009). Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Computers, Environment and Urban Systems, 33(1), 44-54.
    Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151-157.
    Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & Teller, J. (2018). Effects of spatial planning on future flood risks in urban environments. Journal of environmental management, 225, 193-204.
    Noszczyk, T. (2019). A review of approaches to land use changes modeling. Human and Ecological Risk Assessment: An International Journal, 25(6), 1377-1405.
    NUISDR. (2017). National Disaster Risk Assessment–Governance System, Methodologies, and Use of Results.
    O'Donnell, E. C., & Thorne, C. R. (2020). Drivers of future urban flood risk. Philosophical Transactions of the Royal Society A, 378(2168), 20190216.
    Ohl, C. A., & Tapsell, S. (2000). Flooding and human health: the dangers posed are not always obvious. 321(7270), 1167-1168.
    Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2), 314-337.
    Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., & Reynard, N. S. (2010). Scenario-neutral approach to climate change impact studies: application to flood risk. Journal of Hydrology, 390(3-4), 198-209.
    Rana, I. A., & Routray, J. K. (2018). Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Natural hazards, 91(1), 239-266.
    Scott, M., White, I., Kuhlicke, C., Steinführer, A., Sultana, P., Thompson, P., Minnery, J., O'Neill, E., Cooper, J., & Adamson, M. (2013). Living with flood risk/The more we know, the more we know we don't know: Reflections on a decade of planning, flood risk management and false precision/Searching for resilience or building social capacities for flood risks?/Participatory floodplain management: Lessons from Bangladesh/Planning and retrofitting for floods: Insights from Australia/Neighbourhood design considerations in flood risk management/Flood risk management–Challenges to the effective implementation of a paradigm shift. Planning Theory & Practice, 14(1), 103-140.
    Semadeni-Davies, A., Hernebring, C., Svensson, G., & Gustafsson, L.-G. (2008). The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. Journal of Hydrology, 350(1-2), 100-113.
    Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525-552.
    Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H., & Drews, M. (2017). Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrology and Earth System Sciences, 21(8), 4131-4147.
    Smith, M. B. (2006). Comment on'Analysis and modeling of flooding in urban drainage systems'. Journal of Hydrology.
    Solin, L., & Skubincan, P. (2013). Flood risk assessment and management: review of concepts, definitions and methods. Geographical Journal, 65(1), 23-44.
    Szwagrzyk, M., Kaim, D., Price, B., Wypych, A., Grabska, E., & Kozak, J. (2018). Impact of forecasted land use changes on flood risk in the Polish Carpathians. Natural hazards, 94(1), 227-240.
    Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456, 12-29.
    Thanvisitthpon, N., Shrestha, S., & Pal, I. (2018). Urban flooding and climate change: a case study of Bangkok, Thailand. Environment and Urbanization ASIA, 9(1), 86-100.
    Tu, J.-Y., & Chou, C. (2013). Changes in precipitation frequency and intensity in the vicinity of Taiwan: typhoon versus non-typhoon events. Environmental Research Letters, 8(1), 014023.
    UNISDR. (2009). UNISDR terminology on disaster risk reduction.
    van Roosmalen, L., Christensen, J. H., Butts, M. B., Jensen, K. H., & Refsgaard, J. C. (2010). An intercomparison of regional climate model data for hydrological impact studies in Denmark. Journal of Hydrology, 380(3-4), 406-419.
    Walker, R. (2004). Theorizing land-cover and land-use change: the case of tropical deforestation. International regional science review, 27(3), 247-270.
    Wan, R., & Yang, G. (2007). Influence of land use/cover change on storm runoff—A case study of Xitiaoxi River Basin in upstream of Taihu Lake Watershed. Chinese Geographical Science, 17(4), 349-356.
    Wang, C., Huang, S., & Wang, J. (2022). Spatio-Temporal Dynamic Evolution and Simulation of Dike-Pond Landscape and Ecosystem Service Value Based on MCE-CA-Markov: A Case Study of Shunde, Foshan. Forests, 13(8), 1241.
    Wang, Q., Wang, H., Chang, R., Zeng, H., & Bai, X. (2022). Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecological Modelling, 464, 109850.
    Wheater, H., & Evans, E. (2009). Land use, water management and future flood risk. Land use policy, 26, S251-S264.
    Wilkinson, G. G. (2005). Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Transactions on Geoscience and remote sensing, 43(3), 433-440.
    Winsemius, H. C., Aerts, J. C., Van Beek, L. P., Bierkens, M. F., Bouwman, A., Jongman, B., Kwadijk, J. C., Ligtvoet, W., Lucas, P. L., & Van Vuuren, D. P. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381-385.
    Wu, X., Wang, Z., Guo, S., Liao, W., Zeng, Z., & Chen, X. (2017). Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: a case study in Dongguan City, China. Journal of Hydrology, 547, 428-442.
    Xie, Y., & Batty, M. (2004). Integrated Urban Evolutionary Modeling∗. In GeoDynamics (pp. 297-318). CRC Press.
    Yan, D., Li, J., Xie, S., Liu, Y., Sheng, Y., & Luan, Z. (2022). Examining the expansion of Spartina alterniflora in coastal wetlands using an MCE-CA-Markov model. Frontiers in Marine Science, 1330.
    Zhang, B., & Wang, H. (2021). A new type of dual-scale neighborhood based on vectorization for cellular automata models. GIScience & Remote Sensing, 58(3), 386-404.
    Zhang, H., Ma, W.-c., & Wang, X.-r. (2008). Rapid Urbanization and Implications for Flood Risk Management in Hinterland of the Pearl River Delta, China: The Foshan Study. Sensors, 8(4), 2223-2239.
    Zhi, G., Liao, Z., Tian, W., & Wu, J. (2020). Urban flood risk assessment and analysis with a 3D visualization method coupling the PP-PSO algorithm and building data. Journal of environmental management, 268, 110521.
    Zope, P., Eldho, T., & Jothiprakash, V. (2015). Impacts of urbanization on flooding of a coastal urban catchment: a case study of Mumbai City, India. Natural hazards, 75(1), 887-908.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE