簡易檢索 / 詳目顯示

研究生: 張曜如
Chang, Yao-ju
論文名稱: 雌激素在性別差異影響恐懼制約反應與壓力所造成長期增益現象受損中所扮演的角色探討
Estrogen modulates sexually dimorphic contextual fear conditioning and stress-induced impairment of LTP
指導教授: 許桂森
Hsu, Kuei-sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 125
中文關鍵詞: 恐懼制約壓力長期增益性別差異雌激素
外文關鍵詞: contextual fear, LTP, stress, sex dimorphic, estrogen
相關次數: 點閱:68下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 男女有別?男性與女性在大腦與行為上存在著相當的差異性。此等差異的發生除了源自於生物個體原有遺傳背景的性別差異外,也可能是在生長發育過程中男女專屬的性賀爾蒙波動所造成的影響。根據前人文獻報導與流行病學統計結果指出,女性罹患壓力所造成的情感障礙比例高出男性許多,女性罹患憂鬱症比例為男性的兩倍。這樣的差異可能與兩性在遭遇壓力事件後引發不同程度的下視丘-腦下垂體-腎上腺 (hypothalamus-pituitary-adrenal axis, HPA axis) 內分泌軸線的活化作用有關,已知下視丘-腦下垂體-腎上腺之內分泌軸線的活化為壓力系統的重要表徵,而血液中之皮質醇 (cortisol) 濃度,則為臨床上可測知此壓力系統的標記之一,其可透過直接或間接作用於中樞神經系統訊息傳導分子,進而改變神經元活性及個體行為表現。本論文主要的研究目的係去探討是否壓力所誘發的生理和心理反應上會有性別上的差異,此外雌激素 (estrogen) 在此之中所扮演的角色為何?利用藥理、生化及生理行為模式的策略,我們發現處於不同生理週期的雌性大鼠海馬迴 CA1 區長期增益現象表現的大小程度會隨著體內不同賀爾蒙濃度高低而產生波動,處於雌激素含量較高的 proestrus 和 estrus 時期的雌性大鼠海馬迴 CA1 區域的長期增益現象表現程度明顯大於體內雌激素濃度較低的 diestrus 雌性大鼠與雄性大鼠。此外我們也發現血清中的雌激素含量與海馬迴 CA1 區域的長期增益現象表現程度呈現正相關。再者,量測壓力暴露對於不同性別及不同週期的雌性大鼠所造成的神經突觸塑性影響時,我們發現雄性大鼠遭受壓力時較易產生海馬迴 CA1 區域的長期增益現象表現受損的作用,而當體內處於較高雌激素濃度的雌性大鼠,此一受損情形則較不明顯;另外,在恐懼記憶表現的行為模式上,我們發現雄性大鼠較容易形成恐懼記憶的連結。當生物體暴露在相同場景卻沒有出現前述之危險事件時,恐懼記憶會逐漸消除。我們發現雌性大鼠恐懼記憶消除的速度明顯較雄性大鼠快,而且體內含有較高濃度雌激素的雌性大鼠其恐懼記憶消除的速度也較體內低濃度的雌性大鼠來的快,顯示雌激素可能參與恐懼記憶消除作用中。在卵巢切除的雌性大鼠腹腔注射雌激素受體 ß 亞型的致效劑 diarylpropionitrile (DPN) 也可以加速恐懼記憶消除的作用,然而雌激素受體 α 亞型的致效劑 propyl-pyrazole-triol (PPT) 則與控制組在恐懼記憶消除的作用相當,因此我們認為雌激素所調控的母鼠恐懼記憶消除加速的作用需要活化雌激素受體 ß 亞型。此外,利用卵巢切除母鼠組埋管注射雌激素於海馬迴 CA1 區域相較於注射溶劑組也可以快速消除恐懼記憶,更進一步證實雌激素係直接作用在海馬迴 CA1 區域來產生加速恐懼記憶消除的作用。然而,雌性大鼠並不會因處於不同生理週期而有明顯的活動力改變或是焦慮的現象發生。有趣的是,兩性恐懼記憶形成及消除上的差異在尚未性成熟和青春期時期並未出現。綜合上述實驗結果,揭示了雌激素扮演調控壓力所造成神經突觸塑性改變以及對於恐懼行為表現程度不同的重要角色。個體對於同樣壓力卻有反應程度上的落差,往往決定不同個體罹患壓力相關精神疾病與否,本篇研究除了從分子神經科學及行為科學上顯示性別差異與雌激素含量多寡可造成不同壓力感受與反應,並提供罹患因壓力所造成精神疾病的高危險族群可能有效預防治療的面向。

    Females and males are different in brain and behavior. Differences begin early during development due to a combination of genetic and hormonal events and continue throughout the lifespan of an individual. Females are more susceptible than males to stress-induced affective disorders and twice as likely to experience depression. These differences are probably underlined by sexual dimorphisms observed in the hypothalamic-pituitary-adrenal (HPA) axis activity/response to stress and its interaction with the central neurotransmitter systems. In this study, we investigated whether sex alters behavioral and physiological responses to stress and estrogen exerts both organizational and activational influence on the sex differences in response to stress. Using pharmacological, biochemical and behavioral techniques, we have found that levels of hippocampal CA1 long-term potentiation (LTP) induction vary across the estrous cycle and estrogen contributes greater amount of LTP in proestrus and estrus females. A significant positive linear correlation is evident between the plasma estradiol levels and the magnitude of LTP expression in females. Male rats exhibited significantly higher levels of contextual fear freezing and stress-induced impairment of LTP than female rats. The sexually dimorphic extinction of contextual fear conditioning is mediated, at least in part, through an estrogen-dependent mechanism. An estrogen receptor (ER)  agonist diarylpropionitrile (DPN) but not an ER  agonist propyl-pyrazole-triol (PPT) also facilitataes the extinction of contextual fear memory in ovariectomized female rats, suggesting that estrogen-mediated facilitation of fear extinction involves the activation of ER. Intrahippocampal injection of estradiol one hour before extinction training in ovariectomized female rats remarkably reduced the duration of freezing responses during the extinction training and test, compared with the vehicle-injected control rats. In addition, the locomotion or the anxiety state of female rats does not vary across the estrous cycle. We found no significant difference in acquisition and extinction of contextual fear memory between male and female at juvenile and adolescent ages. Taken together, these experiments reveal an important role for estrogen in modulating both sexually dimorphic contextual fear conditioning and hippocampal synaptic plasticity in response to stress. Understanding why individuals exhibit differential responses to stress-induced affective disorders is important to further the basic science of stress vulnerability as well as to effectively treat and perhaps prevent stress-related affective disorders in at-risk individuals.

    考試合格證明 I 中文摘要 (ABSTRACT IN CHINESE) II 英文摘要 (ABSTRACT IN ENGLISH) VI 誌謝 X 目錄 XI 圖目錄 XIV 縮寫檢索表(ABBREVIATIONS) XVII 第一章 緒論(INTRODUCTION) 1 1-1. 大腦結構與認知功能的性別差異 2 1-2. 性荷爾蒙的生理角色與功能 6 1-3. 性別差異性對於壓力導致相關情緒障礙上的不同感受程度 8 1-4. 性荷爾蒙與腦神經滋養因子 13 1-5. 焦慮與憂鬱的動物行為模式 16 1-6. 研究目的 19 第二章 材料與方法 (MATERALS AND METHODS) 21 2-1. 實驗動物 22 2-2. 動情週期確立 22 2-2.1. 陰道細胞抹片檢測 22 2-2.2. 陰道電阻紀錄 23 2-3. 卵巢切除手術 23 2-4. 血漿中雌二醇濃度測試 24 2-5. 動物急性壓力模式與壓力荷爾蒙濃度測定 25 2-6. 海馬廻腦薄片的製備 26 2-7. 電氣生理學紀錄法 27 2-8. 動物埋管投藥模式 28 2-9. 動物行為試驗 30 2-9.1. 情境式恐懼制約 31 2-9.2. 趨性測試 32 2-9.2. 新事物辨認學習試驗 32 2-9.3.架高十字迷宮 33 2-10. BDNF 濃度測定 34 2-11. 統計分析 35 第三章 實驗結果 (RESULTS) 36 3-1. 確立實驗大鼠體內性荷爾蒙的濃度 37 3-2. 不同動情週期的雌性大鼠與雄性大鼠對於興奮性麩胺酸神經遞作用之影響 39 3-3. 不同雌二醇濃度對於長期增益現象之影響 40 3-4. 不同雌二醇濃度對於腦神經滋養因子之影響 42 3-5. 急性壓力所引起的神經塑性改變與雌二醇濃度間的關係 43 3-6. 不同動情週期的雌性大鼠與雄性大鼠對於壓力感受性之影響 45 3-8. 雌二醇促進情境式恐懼制約記憶消除主要是透過雌激素受器 Β 亞型 53 3-9. 情境式恐懼制約記憶消除在青春期之前的兩性大鼠表現情形 55 3-10. 海馬迴 CA1 腦區局部給予雌二醇對於情境式恐懼制約記憶之影響 57 3-11. 不同動情週期的雌性大鼠與雄性大鼠的焦慮行為模式表現情形 59 第四章 討論(DISCUSSION) 62 第五章 圖表(FIGURES) 72 第六章 參考文獻(REFERENCE) 96 作者簡介 106

    Abraham WC (1999) Metaplasticity:Key Element in Memory and Learning?News Physiol Sci 14:85.
    Aliaga, E., Arancibia, S., Givalois, L., and Tapia-Arancibia, L. (2002). Osmotic stress increases brain-derived neurotrophic factor messenger RNA expression in the hypothalamic supraoptic nucleus with differential regulation of its transcripts. Relation to arginine-vasopressin content. Neuroscience 112, 841-850.
    Altemus, M. (2006). Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav 50, 534-538.
    Angold, A., and Worthman, C.W. (1993). Puberty onset of gender differences in rates of depression: a developmental, epidemiologic and neuroendocrine perspective. J Affect Disord 29, 145-158.
    Arnold, A.P., and Breedlove, S.M. (1985). Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav 19, 469-498.
    Bai, Y., and Giguere, V. (2003). Isoform-selective interactions between estrogen receptors and steroid receptor coactivators promoted by estradiol and ErbB-2 signaling in living cells. Mol Endocrinol 17, 589-599.
    Barr, C.S., Newman, T.K., Lindell, S., Becker, M.L., Shannon, C., Champoux, M., Suomi, S.J., and Higley, J.D. (2004). Early experience and sex interact to influence limbic-hypothalamic-pituitary-adrenal-axis function after acute alcohol administration in rhesus macaques (Macaca mulatta). Alcohol Clin Exp Res 28, 1114-1119.
    Bear, M.F., Cooper, L.N., and Ebner, F.F. (1987). A physiological basis for a theory of synapse modification. Science 237, 42-48.
    Behrens, M.M., Strasser, U., Koh, J.Y., Gwag, B.J., and Choi, D.W. (1999). Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase. Neuroscience 94, 917-927.
    Bevins, R.A., and Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc 1, 1306-1311.
    Blanchard, D.C., Shepherd, J.K., De Padua Carobrez, A., and Blanchard, R.J. (1991). Sex effects in defensive behavior: baseline differences and drug interactions. Neurosci Biobehav Rev 15, 461-468.
    Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.
    Bramham, C.R., and Messaoudi, E. (2005). BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76, 99-125.
    Carrer, H.F., Araque, A., and Buno, W. (2003). Estradiol regulates the slow Ca2+-activated K+ current in hippocampal pyramidal neurons. J Neurosci 23, 6338-6344.
    Cooke, B.M., Tabibnia, G., and Breedlove, S.M. (1999). A brain sexual dimorphism controlled by adult circulating androgens. Proc Natl Acad Sci U S A 96, 7538-7540.
    Dahlman-Wright, K., Cavailles, V., Fuqua, S.A., Jordan, V.C., Katzenellenbogen, J.A., Korach, K.S., Maggi, A., Muramatsu, M., Parker, M.G., and Gustafsson, J.A. (2006). International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58, 773-781.
    Dalla, C., Antoniou, K., Papadopoulou-Daifoti, Z., Balthazart, J., and Bakker, J. (2005). Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology. Behav Brain Res 163, 186-193.
    Dalla, C., Edgecomb, C., Whetstone, A.S., and Shors, T.J. (2008). Females do not express learned helplessness like males do. Neuropsychopharmacology 33, 1559-1569.
    De Vries, G.J., Rissman, E.F., Simerly, R.B., Yang, L.Y., Scordalakes, E.M., Auger, C.J., Swain, A., Lovell-Badge, R., Burgoyne, P.S., and Arnold, A.P. (2002). A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci 22, 9005-9014.
    Diamond, D.M., Bennett, M.C., Fleshner, M., and Rose, G.M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2, 421-430.
    Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1, 41-50.
    Faraday, M.M. (2002). Rat sex and strain differences in responses to stress. Physiol Behav 75, 507-522.
    Figueiredo, H.F., Dolgas, C.M., and Herman, J.P. (2002). Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 143, 2534-2540.
    Figueiredo, H.F., Ulrich-Lai, Y.M., Choi, D.C., and Herman, J.P. (2007). Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab 292, E1173-1182.
    Foy, M.R., Stanton, M.E., Levine, S., and Thompson, R.F. (1987). Behavioral stress impairs long-term potentiation in rodent hippocampus. Behav Neural Biol 48, 138-149.
    Frances Edwards, D., and Levin, R.J. (1975). The bioelectric parameters of the vagina during the oestrous cycle of the rat. J Physiol 248, 307-315.
    Franklin, T.B., and Perrot-Sinal, T.S. (2006). Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions. Psychoneuroendocrinology 31, 38-48.
    Galea, L.A., McEwen, B.S., Tanapat, P., Deak, T., Spencer, R.L., and Dhabhar, F.S. (1997). Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81, 689-697.
    Gibbs, R.B. (2005). Testosterone and estradiol produce different effects on cognitive performance in male rats. Horm Behav 48, 268-277.
    Gibbs, R.B., and Gabor, R. (2003). Estrogen and cognition: applying preclinical findings to clinical perspectives. J Neurosci Res 74, 637-643.
    Good, M., Day, M., and Muir, J.L. (1999). Cyclical changes in endogenous levels of oestrogen modulate the induction of LTD and LTP in the hippocampal CA1 region. Eur J Neurosci 11, 4476-4480.
    Gupta, R.R., Sen, S., Diepenhorst, L.L., Rudick, C.N., and Maren, S. (2001). Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats(1). Brain Res 888, 356-365.
    Hale, W.D., and Cochran, C.D. (1983). Sex differences in patterns of self-reported psychopathology in the married elderly. J Clin Psychol 39, 647-650.
    Hampson, E. (1990a). Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology 15, 97-111.
    Hampson, E. (1990b). Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn 14, 26-43.
    Harbuz, M.S., Rooney, C., Jones, M., and Ingram, C.D. (1999). Hypothalamo-pituitary-adrenal axis responses to lipopolysaccharide in male and female rats with adjuvant-induced arthritis. Brain Behav Immun 13, 335-347.
    Heinsbroek, R.P., Van Haaren, F., Feenstra, M.G., Endert, E., and Van de Poll, N.E. (1991). Sex- and time-dependent changes in neurochemical and hormonal variables induced by predictable and unpredictable footshock. Physiol Behav 49, 1251-1256.
    Hubscher, C.H., Brooks, D.L., and Johnson, J.R. (2005). A quantitative method for assessing stages of the rat estrous cycle. Biotech Histochem 80, 79-87.
    Hurn, P.D., and Macrae, I.M. (2000). Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20, 631-652.
    Johnston, A.L., and File, S.E. (1991). Sex differences in animal tests of anxiety. Physiol Behav 49, 245-250.
    Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038.
    Katzenellenbogen, B.S., and Katzenellenbogen, J.A. (2000). Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2, 335-344.
    Kaufman, J., Plotsky, P.M., Nemeroff, C.B., and Charney, D.S. (2000). Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 48, 778-790.
    Kendler, K.S., Gardner, C.O., and Prescott, C.A. (2001a). Are there sex differences in the reliability of a lifetime history of major depression and its predictors? Psychol Med 31, 617-625.
    Kendler, K.S., Neale, M.C., Kessler, R.C., Heath, A.C., and Eaves, L.J. (1993). The lifetime history of major depression in women. Reliability of diagnosis and heritability. Arch Gen Psychiatry 50, 863-870.
    Kendler, K.S., Thornton, L.M., and Prescott, C.A. (2001b). Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am J Psychiatry 158, 587-593.
    Kennett, G.A., Chaouloff, F., Marcou, M., and Curzon, G. (1986). Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Res 382, 416-421.
    Kim, J.J., and Fanselow, M.S. (1992). Modality-specific retrograde amnesia of fear. Science 256, 675-677.
    Kim, J.J., Foy, M.R., and Thompson, R.F. (1996). Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci U S A 93, 4750-4753.
    Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Curr Opin Neurobiol 6, 259-263.
    Kornstein, S.G. (1997). Gender differences in depression: implications for treatment. J Clin Psychiatry 58 Suppl 15, 12-18.
    Korol, D.L. (2004). Role of estrogen in balancing contributions from multiple memory systems. Neurobiol Learn Mem 82, 309-323.
    Lamprea, M.R., Cardenas, F.P., Setem, J., and Morato, S. (2008). Thigmotactic responses in an open-field. Braz J Med Biol Res 41, 135-140.
    Larson, E.B., and Carroll, M.E. (2007). Estrogen receptor beta, but not alpha, mediates estrogen's effect on cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized female rats. Neuropsychopharmacology 32, 1334-1345.
    Lee, J., Duan, W., and Mattson, M.P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82, 1367-1375.
    Lewis, C., McEwen, B.S., and Frankfurt, M. (1995). Estrogen-induction of dendritic spines in ventromedial hypothalamus and hippocampus: effects of neonatal aromatase blockade and adult GDX. Brain Res Dev Brain Res 87, 91-95.
    Linden, D.J., and Connor, J.A. (1995). Long-term synaptic depression. Annu Rev Neurosci 18, 319-357.
    Lu, B. (2003). Pro-region of neurotrophins: role in synaptic modulation. Neuron 39, 735-738.
    Maciejewski, P.K., Prigerson, H.G., and Mazure, C.M. (2001). Sex differences in event-related risk for major depression. Psychol Med 31, 593-604.
    Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24, 897-931.
    Maren, S., De Oca, B., and Fanselow, M.S. (1994). Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res 661, 25-34.
    McEwen, B.S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840, 33-44.
    McEwen, B.S. (1999a). Permanence of brain sex differences and structural plasticity of the adult brain. Proc Natl Acad Sci U S A 96, 7128-7130.
    McEwen, B.S. (1999b). Stress and hippocampal plasticity. Annu Rev Neurosci 22, 105-122.
    McEwen, B.S. (2001). From molecules to mind. Stress, individual differences, and the social environment. Ann N Y Acad Sci 935, 42-49.
    Milad, M.R., Rauch, S.L., Pitman, R.K., and Quirk, G.J. (2006). Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73, 61-71.
    Murdoch, F.E., and Gorski, J. (1991). The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 78, C103-108.
    Myers, K.M., and Davis, M. (2007). Mechanisms of fear extinction. Mol Psychiatry 12, 120-150.
    Nemeroff, C.B. (2007). The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41, 189-206.
    Nequin, L.G., Alvarez, J., and Schwartz, N.B. (1979). Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat. Biol Reprod 20, 659-670.
    Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J., and Monteggia, L.M. (2002). Neurobiology of depression. Neuron 34, 13-25.
    Palanza, P. (2001). Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25, 219-233.
    Phillips, J.G., and Poolsanguan, W. (1978). A method to study temporal changes in adrenal activity in relation to sexual status in the female laboratory rat. J Endocrinol 77, 283-291.
    Qiu, J., Bosch, M.A., Tobias, S.C., Grandy, D.K., Scanlan, T.S., Ronnekleiv, O.K., and Kelly, M.J. (2003). Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 23, 9529-9540.
    Quirk, G.J., and Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56-72.
    Raisman, G., and Field, P.M. (1971). Sexual dimorphism in the preoptic area of the rat. Science 173, 731-733.
    Rolls, E.T., Stringer, S.M., and Trappenberg, T.P. (2002). A unified model of spatial and episodic memory. Proc Biol Sci 269, 1087-1093.
    Roof, R.L., and Havens, M.D. (1992). Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res 572, 310-313.
    Scharfman, H.E., Hintz, T.M., Gomez, J., Stormes, K.A., Barouk, S., Malthankar-Phatak, G.H., McCloskey, D.P., Luine, V.N., and Maclusky, N.J. (2007). Changes in hippocampal function of ovariectomized rats after sequential low doses of estradiol to simulate the preovulatory estrogen surge. Eur J Neurosci 26, 2595-2612.
    Scharfman, H.E., and Maclusky, N.J. (2005). Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci 28, 79-85.
    Schwarz, J.M., Liang, S.L., Thompson, S.M., and McCarthy, M.M. (2008). Estradiol induces hypothalamic dendritic spines by enhancing glutamate release: a mechanism for organizational sex differences. Neuron 58, 584-598.
    Segal, M., and Murphy, D. (2001). Estradiol induces formation of dendritic spines in hippocampal neurons: functional correlates. Horm Behav 40, 156-159.
    Shors, T.J., Seib, T.B., Levine, S., and Thompson, R.F. (1989). Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224-226.
    Smith, C.C., and McMahon, L.L. (2005). Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J Neurosci 25, 7780-7791.
    Smith, C.C., and McMahon, L.L. (2006). Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J Neurosci 26, 8517-8522.
    Somers, J.M., Goldner, E.M., Waraich, P., and Hsu, L. (2006). Prevalence and incidence studies of anxiety disorders: a systematic review of the literature. Can J Psychiatry 51, 100-113.
    Steenbergen, H.L., Heinsbroek, R.P., Van Hest, A., and Van de Poll, N.E. (1990). Sex-dependent effects of inescapable shock administration on shuttlebox-escape performance and elevated plus-maze behavior. Physiol Behav 48, 571-576.
    Stein, M.B., Walker, J.R., and Forde, D.R. (2000). Gender differences in susceptibility to posttraumatic stress disorder. Behav Res Ther 38, 619-628.
    Steiner, A.A., Reste, G., and Branco, L.G. (2003). Role of the brain heme oxygenase-carbon monoxide pathway in stress fever in rats. Neurosci Lett 341, 193-196.
    Swaab, D.F., Chung, W.C., Kruijver, F.P., Hofman, M.A., and Hestiantoro, A. (2003). Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging 24 Suppl 1, S1-16; discussion S17-19.
    Turner, R.J., and Lloyd, D.A. (1999). The stress process and the social distribution of depression. J Health Soc Behav 40, 374-404.
    Vasudevan, N., Ogawa, S., and Pfaff, D. (2002). Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 82, 923-944.
    Vellucci, S.V., Parrott, R.F., and Mimmack, M.L. (2001). Down-regulation of BDNF mRNA, with no effect on trkB or glucocorticoid receptor m RNAs, in the porcine hippocampus after acute dexamethasone treatment. Res Vet Sci 70, 157-162.
    Viau, V., and Meaney, M.J. (1991). Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 129, 2503-2511.
    Walf, A.A., and Frye, C.A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2, 322-328.
    Warren, S.G., Humphreys, A.G., Juraska, J.M., and Greenough, W.T. (1995). LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res 703, 26-30.
    Woolley, C.S., and McEwen, B.S. (1992). Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12, 2549-2554.
    Woolley, C.S., and Schwartzkroin, P.A. (1998). Hormonal effects on the brain. Epilepsia 39 Suppl 8, S2-8.
    Woolley, C.S., Weiland, N.G., McEwen, B.S., and Schwartzkroin, P.A. (1997). Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 17, 1848-1859.
    Wu, T.W., Wang, J.M., Chen, S., and Brinton, R.D. (2005). 17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 135, 59-72.
    Xu, H., Steven Richardson, J., and Li, X.M. (2003). Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28, 53-62.
    Xu, L., Anwyl, R., and Rowan, M.J. (1997). Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497-500.
    Xu, L., Holscher, C., Anwyl, R., and Rowan, M.J. (1998). Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc Natl Acad Sci U S A 95, 3204-3208.
    Yamada, K., and Nabeshima, T. (2003). Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91, 267-270.
    Yang, C.H., Huang, C.C., and Hsu, K.S. (2004). Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J Neurosci 24, 11029-11034.
    Yang, C.H., Huang, C.C., and Hsu, K.S. (2005). Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J Neurosci 25, 4288-4293.
    Yonkers, K.A., and White, K. (1992). Premenstrual exacerbation of depression: one process or two? J Clin Psychiatry 53, 289-292.
    Zamani, M.R., Desmond, N.L., and Levy, W.B. (2000). Estradiol modulates long-term synaptic depression in female rat hippocampus. J Neurophysiol 84, 1800-1808.
    Zhao, L., and Brinton, R.D. (2007). Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172, 48-59.
    Zimmerberg, B., and Farley, M.J. (1993). Sex differences in anxiety behavior in rats: role of gonadal hormones. Physiol Behav 54, 1119-1124.
    Zimmermann, P., Wittchen, H.U., Hofler, M., Pfister, H., Kessler, R.C., and Lieb, R. (2003). Primary anxiety disorders and the development of subsequent alcohol use disorders: a 4-year community study of adolescents and young adults. Psychol Med 33, 1211-1222.
    Zucker, R.S. (1989). Short-term synaptic plasticity. Annu Rev Neurosci 12, 13-31.

    下載圖示 校內:2009-08-06公開
    校外:2013-08-06公開
    QR CODE