簡易檢索 / 詳目顯示

研究生: 王秋閔
Wang, Chiu-Min
論文名稱: 修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成
A Modified Firefly Algorithm for Optimum Synthesis of Path Generating Mechanisms
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 129
中文關鍵詞: 修正螢火蟲演算法機構尺寸最佳化路徑產生尺寸合成
外文關鍵詞: modified firefly algorithm, optimum synthesis of mechanism, path generation, dimensional synthesis
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究參考螢火蟲演算法與布穀鳥搜尋演算法,結合螢火蟲的生物特性,提出修正螢火蟲演算法。本研究將修正螢火蟲演算法應用在路徑產生機構最佳化尺寸合成,首先以六個基準最佳化測試函數為範例,比較螢火蟲演算法與修正螢火蟲演算法,證明修正螢火蟲演算法的最佳化結果優於螢火蟲演算法。再以三個機構尺寸最佳化的範例,分別為四連桿機構、六連桿機構、八連桿機構,說明修正螢火蟲演算法於機構尺寸最佳化的可行性。並依據此三個範例將修正螢火蟲演算法與五個啟發式演算法做比較,其中包含:布穀鳥搜尋演算法、螢火蟲演算法、花朵授粉演算法、基因遺傳演算法、帝國主義競爭演算法。於六連桿機構範例尺寸最佳化範例中,本研究以Klann Linkage機構繪出的軌跡為此範例的目標軌跡,因此已知的最佳解為Klann Linkage機構尺寸,以此範例來驗證修正螢火蟲演算法最佳化結果的正確性。於八連桿機構尺寸最佳化範例中,本研究採用Theo Jansen機構,並以人類爬梯軌跡為目標軌跡,最佳化出一組最接近人類爬梯軌跡的八連桿機構。

    This study combines firefly algorithm and cuckoo search to form a modified firefly algorithm. The proposed modified firefly algorithm is applied to synthesize path generating mechanisms. Six test functions are used as test examples. These examples compare the result from firefly algorithm and the modified firefly algorithm, and the results show that the optimal solution of the modified firefly algorithm is better than the firefly algorithm. Three analysis cases including four-bar linkage, six-bar linkage, and eight-bar linkage, are used to illustrate the feasibility of using the modified firefly algorithm for optimum synthesis of path generating mechanisms. These examples compare the result from the modified firefly algorithm, cuckoo search, flower pollination algorithm, genetic algorithm, and imperialist competitive algorithm. In the six-bar linkage example, this study uses Klann linkage’s locus as the target locus, so the best solution is the dimension of Klann linkage. Therefore, this example validates the result of the modified firefly algorithm. In the eight-bar linkage example, this study uses Theo Jansen linkage, and uses human foot trajectory when climbing stairs as the target locus. The results show the proposed method can synthesize path generating mechanisms successfully.

    摘要 I 目錄 XV 表目錄 XIX 圖目錄 XXI 符號表 XXIV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 最佳化機構尺寸文獻回顧 2 1-2-2 螢火蟲演算法文獻回顧 3 1-2-3 布穀鳥搜尋演算法文獻回顧 5 1-2-4 花朵授粉演算法文獻回顧 6 1-2-5 基因演算法文獻回顧 8 1-2-6 帝國主義競爭演算法文獻回顧 9 1-3 研究動機與目標 11 1-4 本文架構 12 第二章 啟發式最佳化演算法介紹 13 2-1 前言 13 2-2 布穀鳥搜尋演算法 Cuckoo Search 14 2-2-1 布穀鳥的行為 14 2-2-2 萊維飛行 Lévy Flight 15 2-2-3 布穀鳥搜尋演算法流程 16 2-3 花朵授粉演算法 Flower Pollination Algorithm 19 2-3-1 花朵授粉特性 19 2-3-2 花朵授粉演算法流程 20 2-4 基因遺傳演算法 Genetic Algorithm 23 2-4-1 基因遺傳演算法的起源與概念 23 2-4-2 基因遺傳演算法的演化程序 23 2-4-3 基因遺傳演算法流程 24 2-5 帝國主義競爭演算法Imperialist Competitive Algorithm 26 2-5-1 帝國主義的歷史起源 26 2-5-2 帝國主義競爭演算法的同化政策 27 2-5-3 帝國主義演算法的競爭 28 2-5-4 帝國主義競爭演算法的流程 31 2-6 本章小結 32 第三章 修正螢火蟲演算法 33 3-1 前言 33 3-2 螢火蟲演算法 Firefly Algorithm 33 3-2-1 螢火蟲行為 33 3-2-2 螢火蟲演算法的數學定義 34 3-2-3 螢火蟲演算法流程 35 3-3 修正螢火蟲演算法 Modify Firefly Algorithm 37 3-3-1 修正螢火蟲演算法的生物特性 37 3-3-2 隨機漫步 Random walk 37 3-3-3 修正螢火蟲演算法流程 38 3-4 修正螢火蟲演算法範例結果 40 3-4-1 演算法比較範例說明 40 3-4-2 測試函數一:Ackley’s function 41 3-4-3 測試函數二:De Jong’s function 43 3-4-4 測試函數三:Easom’s function 45 3-4-5 測試函數四:Michalewicz’s function 47 3-4-6 測試函數五:Rastrigin’s function 49 3-4-7 測試函數六:Rosenbrock’s function 51 3-4-8 修正螢火蟲演算法與螢火蟲演算法比較結果 53 3-5 本章小結 55 第四章 修正螢火蟲演算法機構尺寸最佳化範例 56 4-1 前言 56 4-2 四連桿設計機構尺寸最佳化範例 56 4-2-1 四連桿機構位置分析 57 4-2-2 四連桿機構尺寸最佳化目標函數與限制函數 61 4-2-3 四連桿機構尺寸最佳化演算法結果討論 65 4-2-4 四連桿機構尺寸最佳化機構與軌跡結果討論 69 4-3 六連桿設計機構尺寸最佳化範例 74 4-3-1 六連桿機構位置分析 75 4-3-2 六連桿機構尺寸最佳化目標函數與限制函數 80 4-3-3 六連桿機構尺寸最佳化演算法結果討論 83 4-3-4 六連桿機構尺寸最佳化機構與軌跡結果討論 86 4-4 八連桿設計機構尺寸最佳化範例 91 4-4-1 八連桿機構位置分析 92 4-4-2 八連桿機構尺寸最佳化目標函數與限制函數 99 4-4-3 八連桿機構尺寸最佳化演算法結果討論 102 4-4-4 八連桿機構尺寸最佳化機構與軌跡結果討論 106 4-5 本章小結 112 第五章 結論與建議 113 5-1 結論 113 5-2 建議 114 參考文獻 116 附錄 126

    [1] J. Cabrera, A. Simon, and M. Prado, "Optimal synthesis of mechanisms with genetic algorithms," Mechanism and Machine theory, vol. 37, no. 10, pp. 1165-1177, 2002.
    [2] E. C. Kinzel, J. P. Schmiedeler, and G. R. Pennock, "Kinematic synthesis for finitely separated positions using geometric constraint programming," Journal of Mechanical Design, vol. 128, no. 5, pp. 1070-1079, 2006.
    [3] A. Smaili and N. Diab, "Optimum synthesis of hybrid-task mechanisms using ant-gradient search method," Mechanism and Machine Theory, vol. 42, no. 1, pp. 115-130, 2007.
    [4] S. Acharyya and M. Mandal, "Performance of EAs for four-bar linkage synthesis," Mechanism and Machine Theory, vol. 44, no. 9, pp. 1784-1794, 2009.
    [5] N. Nariman-Zadeh, M. Felezi, A. Jamali, and M. Ganji, "Pareto optimal synthesis of four-bar mechanisms for path generation," Mechanism and Machine Theory, vol. 44, no. 1, pp. 180-191, 2009.
    [6] S. Erkaya and I. Uzmay, "Determining link parameters using genetic algorithm in mechanisms with joint clearance," Mechanism and Machine Theory, vol. 44, no. 1, pp. 222-234, 2009.
    [7] W.-Y. Lin, "A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar linkage," Mechanism and Machine Theory, vol. 45, no. 8, pp. 1096-1107, 2010.
    [8] R. McDougall and S. Nokleby, "Grashof mechanism synthesis using multi-objective parallel asynchronous particle swarm optimization," in Canadian Society for Mechanical Engineering Forum, 2010, pp. 1-7.
    [9] X.-S. Yang, "Firefly algorithms for multimodal optimization," in International symposium on stochastic algorithms, 2009, pp. 169-178: Springer.
    [10] I. Fister, I. Fister Jr, X.-S. Yang, and J. Brest, "A comprehensive review of firefly algorithms," Swarm and Evolutionary Computation, vol. 13, pp. 34-46, 2013.
    [11] S. L. Tilahun and H. C. Ong, "Modified Firefly Algorithm," Journal of Applied Mathematics, vol. 2012, p. 12, 2012, Art. no. 467631.
    [12] S. Palit, S. N. Sinha, M. A. Molla, A. Khanra, and M. Kule, "A cryptanalytic attack on the knapsack cryptosystem using binary firefly algorithm," in 2011 2nd International conference on computer and communication technology (ICCCT-2011), 2011.
    [13] R. Falcon, M. Almeida, and A. Nayak, "Fault identification with binary adaptive fireflies in parallel and distributed systems," in Evolutionary Computation (CEC), 2011 IEEE Congress on, 2011, pp. 1359-1366: IEEE.
    [14] K. Chandrasekaran and S. P. Simon, "Network and reliability constrained unit commitment problem using binary real coded firefly algorithm," International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 921-932, 2012.
    [15] S. M. Farahani, A. Abshouri, B. Nasiri, and M. Meybodi, "A Gaussian firefly algorithm," International Journal of Machine Learning and Computing, vol. 1, no. 5, p. 448, 2011.
    [16] X.-S. Yang, "Firefly algorithm, Levy flights and global optimization," in Research and development in intelligent systems XXVI: Springer, 2010, pp. 209-218.
    [17] L. dos Santos Coelho, D. L. de Andrade Bernert, and V. C. Mariani, "A chaotic firefly algorithm applied to reliability-redundancy optimization," in Evolutionary Computation (CEC), 2011 IEEE Congress on, 2011, pp. 517-521: Ieee.
    [18] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, "Firefly algorithm with chaos," Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 89-98, 2013.
    [19] M. Subutic, M. Tuba, and N. Stanarevic, "Parallelization of the firefly algorithm for unconstrained optimization problems," Latest Advances in Information Science and Applications, vol. 22, no. 3, pp. 264-269, 2012.
    [20] C. Liu, F. Gao, and N. Jin, "Design and simulation of a modified firefly algorithm," in Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on, 2014, pp. 21-25: IEEE.
    [21] A. Yelghi and C. Köse, "A modified firefly algorithm for global minimum optimization," Applied Soft Computing, vol. 62, pp. 29-44, 2018.
    [22] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp. 210-214: IEEE.
    [23] R. Rajabioun, "Cuckoo optimization algorithm," Applied soft computing, vol. 11, no. 8, pp. 5508-5518, 2011.
    [24] S. Walton, O. Hassan, K. Morgan, and M. Brown, "Modified cuckoo search: a new gradient free optimisation algorithm," Chaos, Solitons & Fractals, vol. 44, no. 9, pp. 710-718, 2011.
    [25] H. HAKLI, "A modified cuckoo search using different search strategies," International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. Special Issue-1, pp. 190-194, 2016.
    [26] Y. Umenai, F. Uwano, Y. Tajima, M. Nakata, H. Sato, and K. Takadama, "A modified cuckoo search algorithm for dynamic optimization problems," in Evolutionary Computation (CEC), 2016 IEEE Congress on, 2016, pp. 1757-1764: IEEE.
    [27] L. Liu, X. Liu, N. Wang, and P. Zou, "Modified Cuckoo Search Algorithm with Variational Parameters and Logistic Map," Algorithms, vol. 11, no. 3, p. 30, 2018.
    [28] X.-S. Yang, "Flower pollination algorithm for global optimization," in International conference on unconventional computing and natural computation, 2012, pp. 240-249: Springer.
    [29] X.-S. Yang, S. Deb, and X. He, "Eagle strategy with flower algorithm," in Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on, 2013, pp. 1213-1217: IEEE.
    [30] X.-S. Yang, M. Karamanoglu, and X. He, "Flower pollination algorithm: a novel approach for multiobjective optimization," Engineering Optimization, vol. 46, no. 9, pp. 1222-1237, 2014.
    [31] R. Wang and Y. Zhou, "Flower pollination algorithm with dimension by dimension improvement," Mathematical Problems in Engineering, vol. 2014, 2014.
    [32] N. Sakib, M. W. U. Kabir, M. Subbir, and S. Alam, "A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems," International Journal of Soft Computing and Engineering, vol. 4, no. 3, pp. 13-19, 2014.
    [33] O. Abdel-Raouf, I. El-Henawy, and M. Abdel-Baset, "A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles," International Journal of Modern Education and Computer Science, vol. 6, no. 3, p. 38, 2014.
    [34] O. Abdel-Raouf and M. Abdel-Baset, "A new hybrid flower pollination algorithm for solving constrained global optimization problems," International Journal of Applied Operational Research-An Open Access Journal, vol. 4, no. 2, pp. 1-13, 2014.
    [35] E. Nabil, "A modified flower pollination algorithm for global optimization," Expert Systems with Applications, vol. 57, pp. 192-203, 2016.
    [36] J. Holland, "Genetic algorithm computer programs that “evolve” in ways that resemble natural selection can solve complex problems even their cantors do not fully understand," Scientific American. Google Scholar, 1992.
    [37] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine learning, vol. 3, no. 2, pp. 95-99, 1988.
    [38] K. A. De Jong, W. M. Spears, and D. F. Gordon, "Using genetic algorithms for concept learning," Machine learning, vol. 13, no. 2-3, pp. 161-188, 1993.
    [39] M. Brameier and W. Banzhaf, "A comparison of linear genetic programming and neural networks in medical data mining," IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 17-26, 2001.
    [40] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, "A modified genetic algorithm for optimal control problems," Computers & Mathematics with Applications, vol. 23, no. 12, pp. 83-94, 1992.
    [41] N. Kubota, T. Fukuda, F. Arai, and K. Shimojima, "Genetic algorithm with age structure and its application to self-organizing manufacturing system," in Emerging Technologies and Factory Automation, 1994. ETFA'94., IEEE Symposium on, 1994, pp. 472-477: IEEE.
    [42] J. C. Potts, T. D. Giddens, and S. B. Yadav, "The development and evaluation of an improved genetic algorithm based on migration and artificial selection," IEEE transactions on systems, man, and cybernetics, vol. 24, no. 1, pp. 73-86, 1994.
    [43] M. Perry, C. Koh, and Y. Choo, "Modified genetic algorithm strategy for structural identification," Computers & Structures, vol. 84, no. 8-9, pp. 529-540, 2006.
    [44] V. S. Gordon, R. Pirie, A. Wachter, and S. Sharp, "Terrain-based genetic algorithm (TBGA): Modeling parameter space as terrain," in Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1, 1999, pp. 229-235: Morgan Kaufmann Publishers Inc.
    [45] G. Dick, "The spatially-dispersed genetic algorithm: an explicit spatial population structure for gas," in Evolutionary Computation, 2003. CEC'03. The 2003 Congress on, 2003, vol. 4, pp. 2455-2461: IEEE.
    [46] B. Dorronsoro and E. Alba, "A simple cellular genetic algorithm for continuous optimization," in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 2006, pp. 2838-2844: IEEE.
    [47] F. Herrera and M. Lozano, "Gradual distributed real-coded genetic algorithms," IEEE Transactions on Evolutionary computation, vol. 4, no. 1, pp. 43-63, 2000.
    [48] L. J. Eshelman and J. D. Schaffer, "Real-coded genetic algorithms and interval-schemata," in Foundations of genetic algorithms, vol. 2: Elsevier, 1993, pp. 187-202.
    [49] H.-M. Voigt, H. Mühlenbein, and D. Cvetkovic, "Fuzzy recombination for the breeder genetic algorithm," in Proc. Sixth Int. Conf. on Genetic Algorithms, 1995: Citeseer.
    [50] M. Angelova, P. Melo-Pinto, and T. Pencheva, "Modified simple genetic algorithms improving convergence time for the purposes of fermentation process parameter identification," WSEAS Transactions on Systems, vol. 11, no. 7, pp. 256-267, 2012.
    [51] D. Q. Zeebaree, H. Haron, A. M. Abdulazeez, and S. R. Zeebaree, "Combination of K-means clustering with Genetic Algorithm: A review," International Journal of Applied Engineering Research, vol. 12, no. 24, pp. 14238-14245, 2017.
    [52] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition," in Evolutionary computation, 2007. CEC 2007. IEEE Congress on, 2007, pp. 4661-4667: IEEE.
    [53] H. Duan, C. Xu, S. Liu, and S. Shao, "Template matching using chaotic imperialist competitive algorithm," Pattern recognition letters, vol. 31, no. 13, pp. 1868-1875, 2010.
    [54] T. Niknam, E. T. Fard, N. Pourjafarian, and A. Rousta, "An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering," Engineering Applications of Artificial Intelligence, vol. 24, no. 2, pp. 306-317, 2011.
    [55] A. Ebrahimzadeh, J. Addeh, and Z. Rahmani, "Control chart pattern recognition using K-MICA clustering and neural networks," ISA transactions, vol. 51, no. 1, pp. 111-119, 2012.
    [56] N. Razmjooy, B. S. Mousavi, and F. Soleymani, "A hybrid neural network Imperialist Competitive Algorithm for skin color segmentation," Mathematical and Computer Modelling, vol. 57, no. 3-4, pp. 848-856, 2013.
    [57] M. A. Ahmadi, M. Ebadi, A. Shokrollahi, and S. M. J. Majidi, "Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir," Applied Soft Computing, vol. 13, no. 2, pp. 1085-1098, 2013.
    [58] S. Borghei, E. Teymourian, M. Mobin, G. Komaki, and S. Sheikh, "Enhanced imperialist competitive algorithm for the cell formation problem using sequence data," in 17th International Conference on Engineering Management, 2015.
    [59] S. M. Saif, "An Improved Imperialist Competitive Algorithm based on a new assimilation strategy," Journal of Advances in Computer Engineering and Technology, vol. 2, no. 2, pp. 23-32, 2016.
    [60] S. Ebrahimi and P. Payvandy, "Efficient constrained synthesis of path generating four-bar mechanisms based on the heuristic optimization algorithms," Mechanism and Machine Theory, vol. 85, pp. 189-204, 2015.
    [61] 林孟弦, "模仿人類爬梯步態之創新八連桿足型機構最佳設計與多足爬梯機器人設計之研究," 成功大學機械工程學系學位論文, pp. 1-134, 2016.
    [62] R. B. Payne and M. D. Sorensen, The cuckoos. Oxford University Press, 2005.
    [63] P. Lévy, "Théories de L’Addition Aléatories," Paris: Gauthier-Villars, 1937.
    [64] A. M. Reynolds and M. A. Frye, "Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search," PloS one, vol. 2, no. 4, p. e354, 2007.
    [65] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, "A Lévy flight for light," Nature, vol. 453, no. 7194, p. 495, 2008.
    [66] I. Pavlyukevich, "Lévy flights, non-local search and simulated annealing," Journal of Computational Physics, vol. 226, no. 2, pp. 1830-1844, 2007.
    [67] M. F. Shlesinger, "Mathematical physics: Search research," Nature, vol. 443, no. 7109, p. 281, 2006.
    [68] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
    [69] L. Chittka, J. D. Thomson, and N. M. Waser, "Flower constancy, insect psychology, and plant evolution," Naturwissenschaften, vol. 86, no. 8, pp. 361-377, 1999.
    [70] 異花授粉百度百科,網頁, https://baike.baidu.com/item/%E5%BC%82%E8%8A%B1%E6%8E%88%E7%B2%89
    [71] M. Mitchell, "Genetic algorithms: An overview," Complexity, vol. 1, no. 1, pp. 31-39, 1995.
    [72] 林豐澤, "演化式計算上篇: 演化式演算法的三種理論模式," 智慧科技與應用統計學報, vol. 3, no. 1, pp. 1-28, 2005.
    [73] H. Bahrami, M. Abdechiri, and M. R. Meybodi, "Imperialist competitive algorithm with adaptive colonies movement," International Journal of Intelligent Systems and Applications, vol. 4, no. 2, p. 49, 2012.
    [74] M. A. Sharifi and H. Mojallali, "A modified imperialist competitive algorithm for digital IIR filter design," Optik-International Journal for Light and Electron Optics, vol. 126, no. 21, pp. 2979-2984, 2015.
    [75] J. E. Lloyd, "Occurrence of aggressive mimicry in fireflies," Florida Entomologist, pp. 368-376, 1984.
    [76] 隨機漫步維基百科,網頁, https://zh.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E6%BC%AB%E6%AD%A5.
    [77] X.-S. Yang, T. Ting, and M. Karamanoglu, "Random walks, Lévy flights, Markov chains and metaheuristic optimization," in Future information communication technology and applications: Springer, 2013, pp. 1055-1064.
    [78] L. Mlodinow, The drunkard's walk: How randomness rules our lives. Vintage, 2009.
    [79] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test functions for optimization needs, vol. 101, 2005.
    [80] J. C. Klann, "Walking device," U.S Patent 6260862, 2001.
    [81] J. C. Klann, "Walking device," U.S Patent 6364040, 2002.
    [82] J. C. Klann, "Walking device," U.S Patent 6478314, 2002.
    [83] Theo Jansen's Strandbeast網頁http://www.strandbeest.com/
    [84] 黃盈嘉, "創新八連桿足型爬梯機構設計與軌跡最佳化之研究," 成功大學機械工程學系學位論文, pp. 1-143, 2017.
    [85] Klann Linkage機構尺寸,網頁,http://www.mekanizmalar.com/mechanical-spider.html. 

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE