| 研究生: |
陳宏燊 Chen, Hong-Shen |
|---|---|
| 論文名稱: |
層狀釩酸鐵材料於電催化裂解水之應用 Layered iron vanadate as high efficient electrocatalyst for water splitting |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 釩酸鐵 、催化劑 、產氧反應 |
| 外文關鍵詞: | iron vanadate, catalyst, OER |
| 相關次數: | 點閱:87 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於各種嚴重的環境問題,對清潔能源的需求持續增長,這正在推動學術界和工業界做出巨大努力,作為最促進清潔能源之一的水分解因此受到廣泛關注。 但是,目前的水分解受到緩慢的陽極產氧反應(OER)的限制。 儘管已知稀有材料如IrO2和RuO2是出色的OER催化劑,但其高成本和稀缺性促使研究人員尋找替代材料。在近期的研究中,FeVO4作為電催化劑可以在10mA/cm2下產生240mV的過電位,而Fe5V15O39(OH)9·9H2O(FVO)也已經被證明是具有發展前景的二次電池的正極材料。釩作為低成本的過渡金屬,其作為摻雜元素具有降低自由能的特點,並且可以改變樣品中的電化學結構;此外釩與鐵具有協同作用,可以促進電化學反應的發生。
本論文以共沉積法合成製備釩酸鐵Fe5V15O39(OH)9·9H2O(FVO),以及通過調配Fe/V的比例來探究其隨著鐵/釩比例的變化而導致反應活性差異,並探究其原因主要是表面活性情況的不同。此外利用調控合成環境的不同pH下,研究樣品的催化活性以及分析得出合適的pH值促進了表面活性物質的生成,進而促進了OER。
Iron vanadate was synthesized by facile method for favorable electrical performance in recent literatures. The attraction of oxygen species of vanadium in nickel-iron base composite is moderate and improve OER process. Fe3+ and VOx3- has high concentration in low pH value condition that can growth like 2D structure. Here, we synthesis Fe5V15O39(OH)9·9H2O(FVO) with adjusting Fe/V ratio to get lowest overpotential η@10mA/cm2 by co-precipitation method. Based on the performance of these material, pH value was applied for modifying for large surface area in water splitting process. The obtained these electrocatalysts was evaluated the electrical performance by oxygen production test.
[1]. Barnham, K.W.J., M. Mazzer, and B. Clive, Resolving the energy crisis: nuclear or photovoltaics? Nature Materials, 2006. 5(3): p. 161-164.
[2]. Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011. 660(2): p. 254-260.
[3]. Matsumoto, Y. and E. Sato, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 1986. 14(5): p. 397-426.
[4]. Rossmeisl, J., et al., Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007. 607(1-2): p. 83-89.
[5]. Man, I.C., et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
[6]. Yan, Y., et al., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(45): p. 17587-17603.
[7]. You, B. and Y. Sun, Innovative Strategies for Electrocatalytic Water Splitting. Acc Chem Res, 2018. 51(7): p. 1571-1580.
[8]. Valenti, G., et al., Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature communications, 2016. 7: p. 13549-13549.
[9]. Lee, Y., et al., Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters, 2012. 3(3): p. 399-404.
[10]. Seitz, L.C., et al., A highly active and stable IrO<em><sub>x</sub></em>/SrIrO<sub>3</sub> catalyst for the oxygen evolution reaction. Science, 2016. 353(6303): p. 1011-1014.
[11]. Cobo, S., et al., A Janus cobalt-based catalytic material for electro-splitting of water. Nature materials, 2012. 11(9): p. 802-807 %@ 1476-4660.
[12]. Jamesh, M.-I. and X. Sun, Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review. Journal of Power Sources, 2018. 400: p. 31-68.
[13]. Sivasankar, N., W.W. Weare, and H. Frei, Direct Observation of a Hydroperoxide Surface Intermediate upon Visible Light-Driven Water Oxidation at an Ir Oxide Nanocluster Catalyst by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society, 2011. 133(33): p. 12976-12979.
[14]. Kim, W., et al., Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCoII Unit Coupled to Ir Oxide Nanocluster Catalyst. Journal of the American Chemical Society, 2014. 136(31): p. 11034-11042.
[15]. Zhang, M., M. de Respinis, and H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chemistry, 2014. 6(4): p. 362-367.
[16]. Ganesan, P., A. Sivanantham, and S. Shanmugam, Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. Journal of Materials Chemistry A, 2016. 4(42): p. 16394-16402.
[17]. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 2015. 5(1): p. 13801.
[18]. Gong, M., et al., An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455.
[19]. Aredes, S., B. Klein, and M. Pawlik, The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production, 2013. 60: p. 71-76.
[20]. Kwong, W.L., et al., High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media. Journal of Catalysis, 2018. 365: p. 29-35.
[21]. Park, Y., et al., Electrochemically deposited Fe2O3 nanorods on carbon nanofibers for free-standing anodes of lithium-ion batteries. Carbon, 2015. 94: p. 9-17.
[22]. Zhang, S., et al., Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chemical Engineering Journal, 2016. 306: p. 193-203.
[23]. Lu, J., et al., Hematite nanodiscs exposing (001) facets: synthesis, formation mechanism and application for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(17): p. 5232-5237.
[24]. Kuang, M., et al., CuCoOx/FeOOH Core–Shell Nanowires as an Efficient Bifunctional Oxygen Evolution and Reduction Catalyst. ACS Energy Letters, 2017. 2(10): p. 2498-2505.
[25]. Luo, W., et al., Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017. 5(5): p. 2021-2028.
[26]. Han, B., et al., Iron-Based Perovskites for Catalyzing Oxygen Evolution Reaction. The Journal of Physical Chemistry C, 2018. 122(15): p. 8445-8454.
[27]. Kim, B.-J., et al., Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019. 141(13): p. 5231-5240.
[28]. Okamura, M., et al., A pentanuclear iron catalyst designed for water oxidation. Nature, 2016. 530(7591): p. 465-468.
[29]. Xu, X., et al., Vanadium-Based Nanomaterials: A Promising Family for Emerging Metal-Ion Batteries. Advanced Functional Materials, 2020. 30(10): p. 1904398.
[30]. Zhao, Y., et al., Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015. 15(3): p. 2180-2185.
[31]. Fan, K., et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016. 7(1): p. 11981.
[32]. Jiang, J., et al., Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat Commun, 2018. 9(1): p. 2885.
[33]. Zhao, Y., et al., Hydrothermal route to metastable phase FeVO 4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm, 2014. 16(2): p. 270-276.
[34]. Weng, B., et al., A layered Na 1− x Ni y Fe 1− y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy & Environmental Science, 2017. 10(1): p. 121-128.
[35]. Zhang, B., et al., Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angewandte Chemie International Edition, 2018. 57(8): p. 2248-2252.
[36]. Silversmit, G., et al., Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004. 135(2): p. 167-175.
[37]. Merino, N.A., et al., La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Applied Surface Science, 2006. 253(3): p. 1489-1493.
[38]. Qi, J., et al., Modulation of crystal water in cobalt phosphate for promoted water oxidation. Chemical Communications, 2020. 56(33): p. 4575-4578.
[39]. de Faria, D.L.A., S. Venâncio Silva, and M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 1997. 28(11): p. 873-878.
[40]. Jubb, A.M. and H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Applied Materials & Interfaces, 2010. 2(10): p. 2804-2812.
[41]. Ureña-Begara, F., A. Crunteanu, and J.-P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature. Applied Surface Science, 2017. 403: p. 717-727.
[42]. Eslamibidgoli, M.J., A. Groß, and M. Eikerling, Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation. Physical Chemistry Chemical Physics, 2017. 19(34): p. 22659-22669.
[43]. Rao, X., et al., From spindle-like β-FeOOH nanoparticles to α-Fe2O3 polyhedral crystals: shape evolution, growth mechanism and gas sensing property. CrystEngComm, 2013. 15(36): p. 7250-7256.