簡易檢索 / 詳目顯示

研究生: 蔡潔雯
Chai, Kit Man
論文名稱: BRCC3調控腦膠質瘤細胞生長與替莫唑胺之抗藥性
BRCA1/BRCA2-containing complex subunit 3 mediates glioma growth and resistance to temozolomide
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: BRCC3BRCC36DNA修復多型性腦膠質母細胞瘤
外文關鍵詞: BRCC3, BRCC36, DNA repair, Glioblastoma multiforme
相關次數: 點閱:151下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多型性腦膠質母細胞瘤 (Glioblastoma multiforme) 是大腦中的惡性腦腫瘤。目前的治療方式為手術切除,並配合放射性治療及化學治療,患者的存活期可延長至18個月。然而,因腫瘤細胞具有抗藥性,化療效果仍不理想。實驗室之前DNA microarray 分析發現大鼠膠質瘤細胞C6具有高量的BRCC3基因表現。BRCC3是 BRCA1-BRCA2 containing complex的子單元,具有去泛素化之酵素活性, BRCC3與DNA修復蛋白複合體會參與DNA受損後修復過程。先前之報告指出,BRCC3在乳癌細胞中具有高度表現,被認爲可能是乳癌治療重要的一環,且參與細胞的HR-dependent DNA repair。目前尚無BRCC3分子參與腦膠質瘤細胞生長和抗藥性的相關性研究成果。因此本研究使用三種人類惡性腦膠質瘤瘤細胞株 (U87,U251,A172 malignant gliomas) 探討BRCC3與腦膠質瘤DNA 修復系統的關係。實驗結果顯示, BRCC3基因表現在A172細胞最高,並且對TMZ有抗藥性;U251細胞內BRCC3基因表現比U87細胞高,且對TMZ反應也較不敏感。此三種膠質瘤細胞此以TMZ處理 48小時後,BRCC3基因在U251與A172細胞中的表現也有顯著上升,而BRCA1,BRCA2,RAD51 和FANCD2 (DNA 修復基因)也隨之提高。進一步發現,降低BRCC3基因表現後,U251與A172細胞的增生速度減低,而且細胞群落形成,遷移與侵入之能力被抑制。 抑制BRCC3基因表現增加TMZ對U251 與A172 細胞毒性作用。並且,BRCC3基因表現降低的U251 與A172 細胞在TMZ處理120小時之後仍有大量 DNA 損傷標誌 H2AX的聚集;DNA 修補相關基因也顯著減低。這些實驗結果顯示BRCC3基因表現的降低導致DNA修復的效果下降。總結目前研究結果,BRCC3扮演調控腦膠質瘤細胞生長和其抗藥性的角色。

    Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors. Although the median survival of patients with GBM has been raised up to 18 months by the current glioma treatment using surgery combined with chemotherapy and radiation therapy. Yet, drug-resistance induced in glioma cells is a critical issue in chemotherapeutic efficiency. Previous observations in our laboratory showed that the expression of BRCA1-BRCA2-containing complex subunit 3 (BRCC3) was highly abundant in rat C6 glioma cells. BRCC3, a deubiquitinating enzyme which is encoded by the BRCC3 gene in human. This molecule has been known as one of the component of DNA repair complex to execute DNA repair in response to DNA damage. Previous studies have indicated that BRCC3 acts as a potential target for treatment of breast cancer. However, the roles of BRCC3 in glioma cells still remain elusive. Here, we used three human malignant glioma cell lines including U87, U251 and A172 to determine the role of BRCC3 in glioma growth. Among the three glioma cell lines, A172 cells expressed the highest level of BRCC3 mRNA and exhibited the greatest resistance to temozolomide (TMZ), the alkylating chemotherapeutic agent for glioma treatment. When compared to U87 cells, U251 cells had a higher BRCC3 mRNA expression and less sensitivity to TMZ. Moreover, exposure to TMZ resulted in upregulation of BRCC3 mRNA expression in U251 and A172 cells. Interestingly, the expression of the other genes commonly associated with HR-dependent DNA repair, i.e. BRCA1, BRCA2, RAD51 and FANCD2 were increased in TMZ-treated U251 and A172 cells. Apart from that, inhibition of BRCC3 using lentivirus-mediated shRNA targeting system was conducted. The results showed that depletion of BRCC3 expression significantly suppressed cell growth, migration and invasion in U251 and A172 cells. In addition, BRCC3 gene knockdown improved sensitization of U251 and A172 cells to TMZ. Persistent accumulation of intense H2AX foci (DNA damage marker) was observed at the later time points post TMZ treatment in U251 and A172 cells with BRCC3 knockdown. Further, expression of DNA repair genes as indicated above was also downregulated in TMZ-treated U251 and A172 cells when BRCC3 gene expression was inhibited. These results indicated that ablation of BRCC3 expression resulted in impairment of DNA repair in TMZ-treated U251 and A172. Collectively, our data provides important evidence to show that BRCC3 is critical for glioma cell growth and its upregluation is the responsive factor to induce resistance in human glioma cells to alkylating agents.

    Contents 中文摘要 II Abstract III Acknowledgement V Contents VII List of Figures X Abbreviations XII Introduction 1 Glioblastoma 1 Temozolomide 2 DNA repair pathways 4 BRCA1-BRCA2-containing complex subunit 3 6 Research Goal 9 Materials and Methods 10 Materials 10 Cell culture materials 10 Chemicals 10 Cell Culture 11 Primers 11 Reagent kits and antibodies 12 Methods 13 Lentivirus-mediated shRNA targeting BRCC3 13 MTT cell proliferation assay 14 Cell scratch assay 14 In vitro transwell cell invasion assay 14 Colony formation assay 15 RNA isolation 15 Quantitative real-time polymerase chain reaction 16 Western Blot 17 Immunofluorescence 17 Image analysis using ImageJ software 18 Immunohistochemistry 18 Statistical analysis 19 Results 20 BRCC3 expression and TMZ resistance in glioma cell lines 20 BRCC3 expression is upregulated following TMZ exposure 21 TMZ induces DNA double strand breaks and triggers upregulation of DNA repair genes in glioma cells 22 BRCC3 expression in human glioma tissues 24 BRCC3 knockdown suppresses glioma growth 25 Inhibition of BRCC3 attenuates glioma cell growth and increases their sensitization to TMZ 26 Discussion 28 Conclusion 34 References 35

    Agarwala SS, Kirkwood JM (2000) Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 5:144-151.
    Azad A, Deb S, Cher L (2009) Primary anaplastic pilocytic astrocytoma. J Clin Neurosci 16:1704-1706.
    Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. Mol Cancer 10:128.
    Chahal M, Abdulkarim B, Xu Y, Guiot MC, Easaw JC, Stifani N, Sabri S (2012) O6-Methylguanine-DNA methyltransferase is a novel negative effector of invasion in glioblastoma multiforme. Mol Cancer Ther 11:2440-2450.
    Chahal M, Xu Y, Lesniak D, Graham K, Famulski K, Christensen JG, Aghi M, Jacques A, Murray D, Sabri S, Abdulkarim B (2010) MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncol 12:822-833.
    Chen CC, Taniguchi T, D'Andrea A (2007) The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. J Mol Med (Berl) 85:497-509.
    Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH (1999) Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem 274:32931-32935.
    Chen L, Gilkes DM, Pan Y, Lane WS, Chen J (2005) ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 24:3411-3422.
    Chen TC, Cho HY, Wang W, Barath M, Sharma N, Hofman FM, Schonthal AH (2014) A novel temozolomide-perillyl alcohol conjugate exhibits superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo. Mol Cancer Ther 13:1181-1193.
    Chen X, Arciero CA, Godwin AK (2006a) BRCA1-associated complexes: new targets to overcome breast cancer radiation resistance. Expert Rev Anticancer Ther 6:187-196.
    Chen X, Arciero CA, Wang C, Broccoli D, Godwin AK (2006b) BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation. Cancer Res 66:5039-5046.
    Cooper EM, Boeke JD, Cohen RE (2010) Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J Biol Chem 285:10344-10352.
    Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE (2009) K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28:621-631.
    Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162-1166.
    Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273-282.
    Decottignies A (2013) Alternative end-joining mechanisms: a historical perspective. Front Genet 4:48.
    Deng CX, Scott F (2000) Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19:1059-1064.
    Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R (2003) Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12:1087-1099.
    Downs JA, Nussenzweig MC, Nussenzweig A (2007) Chromatin dynamics and the preservation of genetic information. Nature 447:951-958.
    Feng L, Huang J, Chen J (2009) MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev 23:719-728.
    Feng L, Wang J, Chen J (2010) The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J Biol Chem 285:30982-30988.
    Fisch P, Forster A, Sherrington PD, Dyer MJ, Rabbitts TH (1993) The chromosomal translocation t(X;14)(q28;q11) in T-cell pro-lymphocytic leukaemia breaks within one gene and activates another. Oncogene 8:3271-3276.
    Frosina G (2009) DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 7:989-999.
    Fukushima T, Takeshima H, Kataoka H (2009) Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. Anticancer Res 29:4845-4854.
    Garretson HD, Shields CB (1979) Angiogenesis in glioblastoma multiforme. Surg Forum 30:440-441.
    Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, Hargrave D, Workman P, Jones C (2010) MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70:9243-9252.
    Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167-177.
    Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281:1009-1012.
    Hau P, Koch D, Hundsberger T, Marg E, Bauer B, Rudolph R, Rauch M, Brenner A, Rieckmann P, Schuth J, Jauch T, Koch H, Bogdahn U (2007) Safety and feasibility of long-term temozolomide treatment in patients with high-grade glioma. Neurology 68:688-690.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997-1003.
    Hirose Y, Kreklau EL, Erickson LC, Berger MS, Pieper RO (2003) Delayed repletion of O6-methylguanine-DNA methyltransferase resulting in failure to protect the human glioblastoma cell line SF767 from temozolomide-induced cytotoxicity. J Neurosurg 98:591-598.
    Hu X, Kim JA, Castillo A, Huang M, Liu J, Wang B (2011) NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes. J Biol Chem 286:11734-11745.
    Huang H, Lin H, Zhang X, Li J (2012) Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-kappaB-dependent pathway. Oncol Rep 27:2050-2056.
    Izycka-Swieszewska E, Rzepko R, Borowska-Lehman J, Stempniewicz M, Sidorowicz M (2003) Angiogenesis in glioblastoma--analysis of intensity and relations to chosen clinical data. Folia Neuropathol 41:15-21.
    Jiang G, Li LT, Xin Y, Zhang L, Liu YQ, Zheng JN (2012) Strategies to improve the killing of tumors using temozolomide: targeting the DNA repair protein MGMT. Curr Med Chem 19:3886-3892.
    Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2:446-457.
    Kaina B, Margison GP, Christmann M (2010) Targeting O(6)-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67:3663-3681.
    Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079-1099.
    Kath R, Schmidt CG (1990) [Tumor progression and metastasis]. Zentralbl Chir 115:785-792.
    Kennedy RD, D'Andrea AD (2005) The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 19:2925-2940.
    Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96:1659-1668.
    Kim S, Jo S, Lee H, Kim TU, Kim IC, Yim JH, Chung H (2013) Lobarstin enhances chemosensitivity in human glioblastoma T98G cells. Anticancer Res 33:5445-5451.
    King MC, Marks JH, Mandell JB, New York Breast Cancer Study G (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643-646.
    Kondo N, Takahashi A, Ono K, Ohnishi T (2010) DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010:543531.
    Kreth FW, Warnke PC, Scheremet R, Ostertag CB (1993) Surgical resection and radiation therapy versus biopsy and radiation therapy in the treatment of glioblastoma multiforme. J Neurosurg 78:762-766.
    Kulke MH, Hornick JL, Frauenhoffer C, Hooshmand S, Ryan DP, Enzinger PC, Meyerhardt JA, Clark JW, Stuart K, Fuchs CS, Redston MS (2009) O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 15:338-345.
    Kuo LJ, Yang LX (2008) Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 22:305-309.
    Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99-113.
    Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679-686.
    Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902-2906.
    Marietta C, Thompson LH, Lamerdin JE, Brooks PJ (2009) Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis. Mutat Res 664:77-83.
    Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G (2013) Use of the gamma-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS One 8:e79541.
    Mirzoeva OK, Kawaguchi T, Pieper RO (2006) The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol Cancer Ther 5:2757-2766.
    Miskinyte S, Butler MG, Herve D, Sarret C, Nicolino M, Petralia JD, Bergametti F, Arnould M, Pham VN, Gore AV, Spengos K, Gazal S, Woimant F, Steinberg GK, Weinstein BM, Tournier-Lasserve E (2011) Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet 88:718-728.
    Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511-518.
    Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761-768.
    Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4:665-676.
    Owonikoko TK, Arbiser J, Zelnak A, Shu HK, Shim H, Robin AM, Kalkanis SN, Whitsett TG, Salhia B, Tran NL, Ryken T, Moore MK, Egan KM, Olson JJ (2014) Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol 11:203-222.
    Parkinson JF, Wheeler HT, McDonald KL (2008) Contribution of DNA repair mechanisms to determining chemotherapy response in high-grade glioma. J Clin Neurosci 15:1-8.
    Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331-338.
    Qiu ZK, Shen D, Chen YS, Yang QY, Guo CC, Feng BH, Chen ZP (2014) Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer 33:115-122.
    Quiros S, Roos WP, Kaina B (2011) Rad51 and BRCA2--New molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One 6:e27183.
    Rebbeck TR et al. (2011) Modification of BRCA1-Associated Breast and Ovarian Cancer Risk by BRCA1-Interacting Genes. Cancer Res 71:5792-5805.
    Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186-197.
    Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, Kaina B (2009) Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O(6)-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 8:72-86.
    Rosen EM (2013) BRCA1 in the DNA damage response and at telomeres. Front Genet 4:85.
    San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229-257.
    Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C, Chen BP, Chen DJ, Agami R, Kerem B (2005) Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 19:2715-2726.
    Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA (2009) The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci U S A 106:3166-3171.
    Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613-626.
    Short SC, Giampieri S, Worku M, Alcaide-German M, Sioftanos G, Bourne S, Lio KI, Shaked-Rabi M, Martindale C (2011) Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neuro Oncol 13:487-499.
    Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198-1202.
    Soderberg-Naucler C, Rahbar A, Stragliotto G (2013) Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med 369:985-986.
    Stupp R, Tonn JC, Brada M, Pentheroudakis G, Group EGW (2010) High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5:v190-193.
    Stupp R et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987-996.
    Stupp R et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459-466.
    Taleei R, Nikjoo H (2013) The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res 179:530-539.
    Talukder KA, Azmi IJ, Ahmed KA, Hossain MS, Kabir Y, Cravioto A, Sack DA, Nur EKA (2012) Activation of p53/ATM-dependent DNA damage signaling pathway by shiga toxin in mammalian cells. Microb Pathog 52:311-317.
    Tan DS, Rothermundt C, Thomas K, Bancroft E, Eeles R, Shanley S, Ardern-Jones A, Norman A, Kaye SB, Gore ME (2008) "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 26:5530-5536.
    Tang JB, Greenberg RA (2010) Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks. Genes Cancer 1:787-796.
    Taniguchi T, D'Andrea AD (2006) Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107:4223-4233.
    Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD (2002) S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100:2414-2420.
    Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65:6394-6400.
    Vergani F, Sanson M, Duffau H (2009) Combined multiple surgical intervention and chemotherapy for multicentric WHO grade II glioma : a long-term follow-up study. Acta Neurochir (Wien) 151:1699-1704.
    Vinjamuri M, Adumala RR, Altaha R, Hobbs GR, Crowell EB, Jr. (2009) Comparative analysis of temozolomide (TMZ) versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly diagnosed glioblastoma multiforme (GBM) patients. J Neurooncol 91:221-225.
    Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS (2009) Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol 11:80-91.
    Wang B, Elledge SJ (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104:20759-20763.
    Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316:1194-1198.
    Wang X, Andreassen PR, D'Andrea AD (2004) Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 24:5850-5862.
    Weller M (2010) Angiogenesis in glioblastoma: just another moving target? Brain 133:955-956.
    Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278-299.
    Yamamoto K, Ishiai M, Matsushita N, Arakawa H, Lamerdin JE, Buerstedde JM, Tanimoto M, Harada M, Thompson LH, Takata M (2003) Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol Cell Biol 23:5421-5430.
    Yamauchi T, Ogawa M, Ueda T (2008) Carmustine-resistant cancer cells are sensitized to temozolomide as a result of enhanced mismatch repair during the development of carmustine resistance. Mol Pharmacol 74:82-91.
    Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, Louis DN (2009) MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res 15:4622-4629.
    Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497-503.
    Zhang J, Stevens MF, Bradshaw TD (2012a) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5:102-114.
    Zhang N, Wu X, Yang L, Xiao F, Zhang H, Zhou A, Huang Z, Huang S (2012b) FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res 18:5961-5971.
    Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616-626.

    無法下載圖示 校內:2019-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE