簡易檢索 / 詳目顯示

研究生: 金順帆
CHIN, SHUN-FAN
論文名稱: 利用數值流形法模擬節理岩體基礎與震動邊坡行為之研究
Simulating the Behavior of Foundation on Jointed Rock Mass and Seismic Slope Using Numerical Manifold Method
指導教授: 吳建宏
Wu, Jian-Hong
李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 數值流形法節理岩體基礎振動邊坡
外文關鍵詞: Numerical Manifold Method, Joint Rock Mass, Seismic Slope, Foundation
相關次數: 點閱:118下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大地工程問題的數值分析法的有很多種,主要分為將岩石視為連續體的數值計算方法如:有限元素法(Finite Element Method, FEM);把岩石視為非連續體的數值分析計算方法如:非連續變形分析法(Discontinuous Deformation Analysis, DDA)。本論文研究之數值流形法(Manifold Method, MM)乃是結合有限元素法的位移函數與非連續體變形分析法的接觸理論,在分析過程中可以同時處理塊體內連續部分與塊體間的接觸情形。
    本研究主要探討節理岩體基礎的承載特性與邊坡受到振動時之行為。分析節理岩體基礎承載時,顯示流形法元素密度越密模擬結果越佳,且在深層的應力模擬結果與解析解一致。另一方面,在振動邊坡的討論時則建立數值流形法模擬振動問題的方法,即設定塊體內各元素節點為束制點然後將依時性位移施加於節點上,藉由水平振動問題與斜面振動問題的解析解與流形法數值解之比較,確定數值流形法能模擬震動邊坡的問題。

    There are many numerical analysis methods applied to geotechnical engineering problems. They can be classified as following categories. One takes the rock mass to be a continuous material, such as Finite Element Method (FEM). The other one takes the rock mass to be a discontinuous material, such as Discontinuous Deformation Analysis (DDA). Manifold method (MM), investigated in this study, consists of the displacement function of finite element method and the contact theory of Discontinuous Deformation Analysis. MM can describe the behaviors of the continuous blocks as wall as the contact between blocks during simulation.
    The major objective of this study is to investigate the stress distribution of the jointed rock mass loaded by a foundation and the behavior of a seismic slope. In the loaded foundation on a jointed rock mass, we conclude that the high density of element has better answers than low density. In addition, the numerical solution in the depth agrees with the analytical solution. On the other hand, we developed an algorithm for MM to simulate the behavior of seismic slope. The algorithm is that takes the nodes of all elements of the block to be constrained point then inputs time-dependent displacements on the nodes. Compare the analytical solutions to numerical ones of horizontal and inclined plane seismic problems, we validate the correctness of using new seismic MM on seismic slope analysis.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 導論 1 1.1研究動機與目的 1 1.2研究流程 2 第二章 文獻回顧 4 2.1數值流形法 4 2.1.1概述 4 2.1.1目前常用之數值分析方法檢討 6 2.1.1.1連續體數值分析方法 6 2.1.1.2非連續體變形分析方法 8 2.1.2流形方法 9 2.1.2.1物理網格與數學網格所形成之有限覆蓋 9 2.1.2.2有限覆蓋上之覆蓋函數與加權函數 14 2.1.2.3共同數學網格上之覆蓋 15 2.1.2.4塊體接觸之最先進入線理論與覆蓋勢能之計算 15 2.1.2.5流形法相關文獻 35 2.2均勻節理之半無限岩體應力分析 36 2.3模擬振動力的方法 40 2.3.1施加地震力於基座束制點 40 2.3.2施加地震加速度於基座 41 2.3.3施加地震力於模擬物體 43 第三章 數值流形法理論推導 45 第四章 節理岩盤受力模擬 64 4.1概論 64 4.2.1完整岩體內部應力分布模擬 65 4.2.2完整岩體受點荷重其內部應力分布模擬 67 4.3均勻節理岩體受點荷重之模擬 70 第五章 岩盤振動問題模擬 88 5.1建立數值流形法振動模式 88 5.2水平振動問題 94 5.2.1推導塊體1的解析解 94 5.2.2利用流形法模擬水平振動問題 97 5.2.3斜面振動問題 101 第六章 結論與建議 105 6.1結論 105 6.2建議 106 參考文獻 107 附錄一 110 附錄二 113 附錄三 120 自述 125

    1.石根華、陳錦清、顧承宇(1999)。三維流形方法有限元滲流分析理論。財團法人中興工程顧問社,台北,台灣。
    2.陳春華(2008)。非連續變形分析法模擬集集地震引致草嶺邊坡崩塌模擬之研究。國立成功大學土木工程學系碩士論文,台南,台灣。
    3.黃騰輝(1998)。邊坡破壞之Manifold數值模擬。國立交通大學土木工程學系碩士論文,新竹,台灣。
    4.張國新、彭靜(2002)。二階流形法與結構變形分析。中國水利水電科學研究院,北京。
    5.張國新、越妍、石根華、彭校初(2007)。模擬岩石邊坡傾導破壞的數值流形方法。中國水利水電科學研究院結構材料所,北京。
    6.劉紅岩、秦四清(2006)。層狀岩石邊坡傾倒破壞過程的數值流形方法模擬。中國科學院工程地質力學重點實驗室,北京。
    7.R. D. Cook, D. S. Malkus, M. E. Plesha, Wiley(2002).Concepts and Applications of Finite Element Analysis. New York, USA.
    8.Y. M. Cheng, Y. H. Zhang, W. S. Chen(2002).Wilson Non-Conforming Element in Uumerical Manifold Method, Communication in Numerical Methods in Engineering, 18, pp.877-884.
    9.E. Gaziev, and S. Erlikhman (1971). Stresses and Strains in Anisotropic Foundations, Proceedings, Symposium on Rock Fracture, ISRM (Nancy), Paper II-1.(間接引用)
    10.R. E. Goodman (1989). Introduction to Rock Mechanics, Second Edition, John Wiley & Sons, New York, USA.
    11.Y. H. Hatzor A. A. Arzi, Y. Zaslavsky, A. Shapira(2004). Dynamic Stability Analysis of Jointed Rock Slopes Using the DDA Method, King Herod’s Palace, Masada, Israel, International Journal of Rock Mechanics & Mining Sciences, 41, pp. 813-832.
    12.J. S. Lin(2003). A Mesh-Based Partition of Unity Method for Discontinuity Modeling, Computer Methods in Applied Mechanics and Engineering, 192, pp.1515-1532.
    13.J. S. Lin, C. Y. Ku(2005). Two-Scale Modeling of Jointed Rock Masses, International Journal of Rock Mechanics & Mining Sciences, 43, pp.426-436.
    14.S. Nishiyama, Y. Ohnish, T. Yanagawa, F. Seki, S. Ikeya(2004). Study on Stability of Retaining Wall of Masonry Type by Using Discontinuous Deformation Analysis, Contribution of Rock Mechanics to the New Century, pp.1221-1226.
    15.G. H. Shi(1989). Discontinuous Deformation Analysis A New Numerical Model for the Statics and Dynamics of Block Systems, Department of Civi Engineering, University of California, Berkeley.
    16.G. H. Shi(1997). The Numerical Manifold Method and Simplex Integration, Working Forum on Manifold Method of Material Analysis, Vol 2, US Army Corps of Engineers Waterways Experiment Station.
    17.J. Song (2002). Numerical Analysis of Discontinuous Rock Masses Using Modified Manifold Method, Department of Civil Engineering System Faculty of Engineering Kyoto University, Kyoto, Japan.
    18.T. Sasaki, I. Hagiwara, K. Sasaki, R. Yoshinaka, Y. Ohnishi, S. Nishiyama(2004). Earthquake Response Analysis of Rock-Fall Models by Discontinuous Deformation Analysis, Contribution of Rock Mechanics to the New Century, pp.1221-1226.
    19.R. J. Tsay, Y. J. Chiou, W. L. Chuang(1999). Crack Growth Prediction by Manifold Method. Journal of Engineering by Mechanics Method, 125(8), p884-890.
    20.C. Xu, C. Yi, T. Chen(2005). Numerical Manifold Method and Its Application to Study Crustal Movements in Sichuan-Yunnan Area, School of Geodesy and Geomatics, Asia Oceania Geosciences Society, SE27,58-SE-A0621.
    21.H. W. Zhang, L. Zhou(2006). Numerical Manifold Method for Dynamic Nonlinear Analysis of Saturated Porous Media, International Journal for Numerical and Analytical Methods in Geomechanics, 30, pp.927-951.

    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE