| 研究生: |
蔡佳齡 Tsai, Jia-Ling |
|---|---|
| 論文名稱: |
腸道共生微生物介導的定殖抵抗力對抗困難梭狀桿菌感染 The guardian gut commensal microbe mediates colonization resistance against Clostridioides difficile infection |
| 指導教授: |
蔡佩珍
Tsai, Jia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 胞外囊泡 、困難梭狀桿菌感染 、粒線體生合成 |
| 外文關鍵詞: | Extracellular vesicles, C. difficile infection, mitochondrial biogenesis |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
困難梭狀桿菌是一種會形成芽孢的革蘭氏陽性厭氧菌,廣泛存在於環境中。其芽孢對消毒劑具高度抗性,並可透過糞口途徑進行傳播。困難梭狀桿菌感染的發生主要歸因於腸道菌相失衡及腸道微環境的改變。目前困難梭狀桿菌感染的治療主要依賴抗生素,但約有20%的患者在初次治療後會出現復發。因此,我們積極尋找可用於預防與治療困難梭狀桿菌感染的新型微生物或其代謝產物。腸道菌在調控腸道功能上的效果具有菌株特異性,一些益生菌已被證實能產生具抗菌性的代謝產物,如丁酸與其他短鏈脂肪酸,可抑制病原菌生長。根據我們先前對健康者與感染困難梭狀桿菌病患腸道菌相的分析,發現丁酸產生菌-糞丁酸腸球菌(B. faecihominis),僅存在於健康組的腸道中,顯示其可能具有抵抗困難梭狀桿菌特性。有趣的是,雖然糞丁酸腸球菌的上清液對困難梭狀桿菌並無抑制作用,但我們從該上清液中純化出奈米級的胞外囊泡(extracellular vesicles, EVs),並發現這些胞外囊泡能有效抑制困難梭狀桿菌的生長。此外,在以富含毒素A/B的困難梭狀桿菌上清液處理腸道上皮細胞HT-29期間,這些胞外囊泡能提升HT-29細胞的存活率,並促進粒線體生合成。這些結果顯示,糞丁酸腸球菌分泌的代謝產物可來抑制困難梭狀桿菌的生長,或增強宿主抵抗困難梭狀桿菌毒素破壞腸道細胞的能力,從而產生保護作用。最後,動物實驗也顯示糞丁酸腸球菌所分泌的胞外囊泡可緩解困難梭狀桿菌感染小鼠的症狀,包括體重減輕與縮短的結腸長度。本研究提供困難梭狀桿菌感染新的治療選擇。
Clostridioides difficile (C. difficile) is a spore-forming, Gram-positive anaerobic bacterium widely present in the environment. Its spores are resistant to disinfectants and can spread through the fecal-oral route. The mechanism of C. difficile infection is attributed to the dysbiosis of gut microbiota and alterations in the microenvironment. Treatment for C. difficile primarily relies on antibiotics. However, about 20% of patients experience a recurrence after initial treatment. Therefore, we aimed to disclose new therapeutic microorganisms or metabolic products for the prevention and treatment of C. difficile infection. The effectiveness of gut microbiota in regulating intestinal functions is strain-specific. Some probiotics have been shown to produce antimicrobial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), which can inhibit the growth of pathogens. According to our previous analysis of gut microbiota from healthy and C. difficile-infected patients, Butyricicoccus faecihominis, a butyrate-producing Gram-positive bacterium, was detected only in the fecal specimen from the healthy group, suggesting its potential role in colonization resistance against C. difficile. Interestingly, although the supernatant of B. faecihominis did not exhibit inhibitory effects on C. difficile, we purified nanoscale extracellular vesicles (EVs) from this supernatant and found that they effectively inhibit C. difficile. In addition, EVs were able to increase HT-29 cell viability and promote mitochondrial biogenesis during treatment with concentrated C. difficile supernatant, which contains toxin A/B. These findings indicate that metabolites secreted by B. faecihominis exerts protective effects either by directly suppressing the growth of C. difficile or by enhancing the host’s resistance to epithelial injury induced by C. difficile toxins. Finally, animal experiments also showed that B. faecihominis EVs can alleviate symptoms of C. difficile infection in mice, including body weight loss and colon shortening. Therefore, our results suggest that B. faecihominis EVs represent a promising new therapeutic strategy for C. difficile infection.
1. S. Di Bella et al., Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin. Microbiol. Rev. 37, e0013523 (2024).
2. J. E. Buddle, R. P. Fagan, Pathogenicity and virulence of Clostridioides difficile. Virulence 14, 2150452 (2023).
3. R. P. Vonberg et al., Infection control measures to limit the spread of Clostridium difficile. Clin. Microbiol. Infect. 14 Suppl 5, 2-20 (2008).
4. F. Remelli et al., Recurrence of Clostridioides difficile infection and mortality in older inpatients. Eur. Geriatr. Med. 15, 743-751 (2024).
5. C. M. Theriot, V. B. Young, Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445-461 (2015).
6. R. A. Britton, V. B. Young, Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146, 1547-1553 (2014).
7. J. Oksi, V. J. Anttila, E. Mattila, Treatment of Clostridioides (Clostridium) difficile infection. Ann. Med. 52, 12-20 (2020).
8. M. H. Wilcox, B. H. McGovern, G. A. Hecht, The efficacy and safety of fecal microbiota transplant for recurrent Clostridium difficile infection: current understanding and gap analysis. Open Forum Infect Dis 7, ofaa114 (2020).
9. A. L. Gregory, D. A. Pensinger, A. J. Hryckowian, A short chain fatty acid-centric view of Clostridioides difficile pathogenesis. PLoS Pathog. 17, e1009959 (2021).
10. C. G. Buffie et al., Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205-208 (2015).
11. K. H. Wilson, F. Perini, Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect. Immun. 56, 2610-2614 (1988).
12. M. C. Abt, P. T. McKenney, E. G. Pamer, Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14, 609-620 (2016).
13. T. Takada, K. Watanabe, H. Makino, A. Kushiro, Reclassification of Eubacterium desmolans as Butyricicoccus desmolans comb. nov., and description of Butyricicoccus faecihominis sp. nov., a butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 66, 4125-4131 (2016).
14. N. Díaz-Garrido, J. Badia, L. Baldomà, Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles 10, e12161 (2021).
15. X. Na, C. Kelly, Probiotics in Clostridium difficile Infection. J. Clin. Gastroenterol. 45 Suppl, S154-158 (2011).
16. R. Pal et al., Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit. Rev. Microbiol. 49, 414-434 (2023).
17. H. Z. Gou, Y. L. Zhang, L. F. Ren, Z. J. Li, L. Zhang, How do intestinal probiotics restore the intestinal barrier? Front. Microbiol. 13, 929346 (2022).
18. O. Burkhardt, T. Köhnlein, M. Pletz, T. Welte, Saccharomyces boulardii induced sepsis: successful therapy with voriconazole after treatment failure with fluconazole. Scand. J. Infect. Dis. 37, 69-72 (2005).
19. S. Doron, D. R. Snydman, Risk and safety of probiotics. Clin. Infect. Dis. 60 Suppl 2, S129-134 (2015).
20. X. Wang et al., Bacteroides-derived isovaleric acid enhances mucosal immunity by facilitating intestinal IgA response in broilers. J Anim Sci Biotechnol 14, 4 (2023).
21. K. Kang, Y. Sun, D. Pan, B. Chang, L. X. Sang, Nicotinamide ameliorates dextran sulfate sodium-induced chronic colitis in mice through its anti-inflammatory properties and modulates the gut microbiota. J Immunol Res 2021, 5084713 (2021).
22. C. Huang et al., Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 20, 148 (2022).
23. I. Martínez-Reyes et al., TCA Cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61, 199-209 (2016).
24. C. Yang et al., Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414-424 (2014).
25. R. Bornstein, M. T. Mulholland, M. Sedensky, P. Morgan, S. C. Johnson, Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol. Cell. Neurosci. 126, 103887 (2023).
26. K. Dornfeld, M. Madden, A. Skildum, K. B. Wallace, Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure. Cell Cycle 14, 3282-3291 (2015).
27. H. Yan, K. M. Ajuwon, Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12, e0179586 (2017).
28. T. Zhao et al., Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction. Oxid. Med. Cell. Longev. 2020, 1904609 (2020).
29. M. Panagia et al., Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR Biomed. 33, e4258 (2020).
30. A. Nusrat et al., Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69, 1329-1336 (2001).
31. W. T. Kuo, M. A. Odenwald, J. R. Turner, L. Zuo, Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 1514, 21-33 (2022).
32. Y. H. Lai et al., Peroxisome proliferator-activated receptor-γ as the gatekeeper of tight junction in Clostridioides difficile infection. Front. Microbiol. 13, 986457 (2022).
33. X. X. Jia et al., A rapid multiplex real-time PCR detection of toxigenic Clostridioides difficile directly from fecal samples. 3 Biotech 13, 54 (2023).
34. C. Chelakkot et al., Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450 (2018).
35. I. Sorić Hosman, I. Kos, L. Lamot, Serum amyloid A in inflammatory rheumatic diseases: A compendious review of a renowned biomarker. Front. Immunol. 11, 631299 (2020).
36. S. Han et al., Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front Cell Infect Microbiol 11, 609722 (2021).
37. X. Liang et al., Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 14, 2134689 (2022).
38. L. Liang et al., Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis through regulating the macrophages polarization and remodeling the gut microbiota. Microb Cell Fact 21, 88 (2022).
39. M. G. Gareau, P. M. Sherman, W. A. Walker, Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503-514 (2010).
校內:不公開