簡易檢索 / 詳目顯示

研究生: 陳柏元
Chen, Po-Yuan
論文名稱: 氣候變遷情境下臺灣地區降雨不均勻性變化之探討
Changes of Rainfall Unevenness in Taiwan under Climate Change
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 81
中文關鍵詞: 氣候變遷降雨不均勻性WD50雨日吉尼指數戴爾指數階層式分群
外文關鍵詞: Climate change, rainfall unevenness, WD50, wet-day Gini index, Theil index , hierarchical grouping
相關次數: 點閱:64下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣地區地形起伏劇烈,氣候型態多樣,且受東亞季風及颱風影響,降雨分布呈現明顯的時空不均特性。近年來,隨著全球氣候變遷加劇,極端降雨事件頻率與強度持續上升,使得豐水期內降雨集中、枯水期乾旱加劇,進一步惡化了降雨的不均勻性,對水資源管理與防災減災策略帶來重大挑戰。因此,瞭解未來氣候變遷情境下降雨不均勻性的變化趨勢,對於提升臺灣地區水資源調適與永續發展能力具有重要意義。本研究利用臺灣氣候變遷推估資訊與調適知識平台(TCCIP)基於IPCC第六次評估報告(AR6)的統計降尺度資料,分析24組全球氣候模式於不同暖化情境(SSP1–2.6、SSP2–4.5、SSP3–7.0、SSP5–8.5)與未來四個時段(2021–2040、2041–2060、2061–2080、2081–2100)下的日降雨資料,計算降雨不均勻性指數,包括年總降雨量50%所需的天數(WD50)、雨日吉尼指數(WDGI)與戴爾指數(TI),以量化降雨集中程度與分布變異。並透過階層式分群法(hierarchical clustering)進行區域分類,探討不同地區降雨不均勻性之空間差異與變化趨勢。研究結果顯示,在最嚴重得暖化情情境與時段,SSP5–8.5遠未來時段相對於基期WD50減少13.23%、WDGI增加2.13%、TI增加8.34%,說明氣候變遷將使臺灣地區降雨不均勻性加劇,且於相關性分析結果顯示,在此情境下,三種指標間相關性最高,代表降雨不均勻性情況從多方面而言皆為惡化的趨勢。分群分析的結果表明在氣候變遷影響下,臺灣各區域降雨模式並未有明顯的變化,相對於基期的改變率東北部大於西南部。本研究成果可為臺灣地區面對氣候變遷下水資源調適與防災規劃提供重要參考。

    Taiwan's steep terrain and monsoon-driven climate result in uneven spatial and temporal rainfall variations. Under intensified global climate change, the frequency and magnitude of extreme rainfall events are rising, leading to increased rainfall concentration during wet seasons and exacerbated droughts during dry seasons. This study investigates future changes in rainfall unevenness across Taiwan under four emission scenarios (SSP1–2.6, SSP2–4.5, SSP3–7.0, SSP5–8.5) and four future periods (2021–2040, 2041–2060, 2061–2080, 2081–2100), using daily precipitation data from 24 CMIP6 models statistically downscaled via the TCCIP platform. Three indexs were used to quantify rainfall unevenness: WD50 (wettest days to 50% of annual rainfall), wet-day Gini index (WDGI), and Theil index (TI). The results show that under the worst-case scenario (SSP5–8.5), WD50 decreases by 13.23%, while WDGI and TI increase by 2.13% and 8.34%, respectively, indicating worsening rainfall unevenness. Correlation analyses reveal strong interdependence among the indexs in this scenario. Hierarchical clustering shows that while regional rainfall patterns remain hearly unchanged, northeast Taiwan experiences greater shifts than the southwest. These findings underscore the urgent need for regional water resource adaptation strategies under future climate conditions.

    摘要 i 目錄 xv 表目錄 xvii 圖目錄 xviii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 氣候變遷影響研究 5 2.2 降雨不均勻性指數研究 7 2.2.1 WD50(wettest days to 50 percent of annual precipitation)相關研究 7 2.2.2 雨日吉尼指數(wet-day Gini index , WDGI)相關研究 8 2.2.3 戴爾指數(Theil Index, TI)相關研究 9 第三章 研究方法 10 3.1 降雨不均勻性指數10 3.1.1 WD50(wettest days to 50 percent of annual precipitation)10 3.1.2 雨日吉尼指數(wet-day Gini index, WDGI) 13 3.1.3 戴爾指數(Theil index, TI) 14 3.2 階層式分群(hierarchical clustering)15 3.2.1 距離度量方法 15 3.2.2 分群方法 16 第四章 研究資料與研究地區 18 4.1 研究區域概述 18 4.2 氣候變遷資料 19 第五章 結果與討論 23 5.1 降雨不均勻性指數分析 23 5.1.1 氣候變遷對WD50影響 23 5.1.2 氣候變遷對WDGI影響 31 5.1.3 氣候變遷對TI影響 39 5.1.4 指數相關性分析 47 5.2 階層式分群分析 50 5.2.1 降雨不均勻性分群結果50 5.2.2 降雨不均勻性相對改變率分群結果 53 第六章 結論與建議 56 6.1 結論 56 6.1.1 氣候邊遷對於指數影響 56 6.1.2 階層式分群 57 6.2 建議 57 參考文獻 58

    Chen, C.-A., Hsu, H.-H., & Liang, H.-C. (2021). Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather and Climate Extremes, 31,
    Chen, Y. (2020). Increasingly uneven intra‐seasonal distribution of daily and hourly precipitation over Eastern China. Environmental Research Letters, 15(10), 104068.
    Goffin, B. D., Kansara, P., & Lakshmi, V. (2023). Intensification in the wettest days to 50 percent of annual precipitation (WD50) across Europe. Geophysical Research Letters, 51, e2023GL107403.
    Guo, Z., Wang, Y., Liu, C., Yang, W., & Liu, J. (2024). PyMTRD: A Python package for calculating the metrics of temporal rainfall distribution. Environmental Modelling & Software, 182, 106201.
    Han, J., Miao, C., Duan, Q., Wu, J., Gou, J., & Zheng, H. (2021). Changes in unevenness of wet‐day precipitation over China during 1961–2020. Journal of Geophysical Research: Atmospheres, 126(19), e2020JD034483.
    Huang, W.-R., Liu, P.-Y., Lee, S.-Y., & Wu, C.-H. (2022). Changes in early summer precipitation characteristics over South China and Taiwan: CESM2-LE and CMIP6 multi-model simulations and projections. Journal of Geophysical Research: Atmospheres, 127(17), e2021JD036036.
    IPCC. (2021). Sixth assessment report (AR6). Intergovernmental Panel on Climate Change.
    Monjo, R., & Martin-Vide, J. (2016). Daily precipitation concentration around the world according to several indices. International Journal of Climatology, 36(11), 3828–3838.
    Núñez-González, G. (2021). Analysis of behaviour and relationship of four daily precipitation concentration indices according to Mexico's precipitation. International Journal of Climatology, 41(7), 3903–3917.
    O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482.
    Pendergrass, A. G., & Knutti, R. (2018). The uneven nature of daily precipitation and its change. Geophysical Research Letters, 45(21), 11980–11988.
    Rajah, K., O’Leary, T., Turner, A., Petrakis, G., Leonard, M., & Westra, S. (2014). Changes to the temporal distribution of daily precipitation. Geophysical Research Letters, 41(24), 8887–8894.
    Sahbeni, G., Pleynet, J. B., & Jarocki, K. (2023). A spatiotemporal analysis of precipitation anomalies using rainfall Gini index between 1980 and 2022. Atmospheric Science Letters, 24(3), e1161.
    Sangüesa, C., Pizarro, R., Ibañez, A., Pino, J., Rivera, D., García-Chevesich, P., & Ingram, B. (2018). Spatial and temporal analysis of rainfall concentration using the Gini index and PCI. Water, 10(2), 181.
    Shin, Y., Hong, J., Kim, M. K., Byun, Y. H., Boo, K. O., Chung, I. U., Park, D. S., & Park, J. S. (2021). Future projections and uncertainty assessment of precipitation extremes in the Korean Peninsula from the CMIP6 Ensemble with a statistical framework. Atmosphere, 12(97).
    Sung, H. M., Kim, J., Shim, S., Seo, J. B., Kwon, S. H., Sun, M. A., Moon, H., Lee, J. H., Lim, Y. J., Boo, K. O., Kim, Y., Lee, J., Lee, J., Kim, J. S., Marzin, C., & Byun, Y. H. (2021). Climate change projection in the twenty-first century simulated by NIMS-KMA CMIP6 model based on new GHGs concentration pathways. Asia-Pacific Journal of Atmospheric Sciences, 57, 851–862.
    Teng, T., Liu, T.-M., Tung, Y.-S., & Cheng, K.-S. (2021). Converting climate change gridded daily rainfall to station daily rainfall—A case study at Zengwen Reservoir. Water, 13(11), 1516.
    Wu, G., Li, Y., Li, T., Ma, Z., & Shi, C. (2021a). The unevenness in observed daily precipitation in mainland China. Theoretical and Applied Climatology, 146(3–4), 1031–1041.
    Wu, G., Li, Y., Qin, S., Mao, Y., & Wang, K. (2021b). Precipitation unevenness in gauge observations and eight reanalyses from 1979 to 2018 over China. Journal of Climate, 34(24), 9797–9810.
    Zou, L., & Zhou, T. (2022). Mean and extreme precipitation changes over China under SSP scenarios: Results from high-resolution dynamical downscaling for CORDEX East Asia. Climate Dynamics, 58(3–4), 1015–1031.
    國家科學及技術委員會, & 環境部. (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適。
    「SSP共享社會經濟路徑 Shared Socioeconomic Pathway 簡介」, https://tccip.ncdr.nat.gov.tw/ds_02_06_ar6.aspx
    「臺灣氣候變遷關鍵指標圖集:AR6統計降尺度版」, https://tccip.ncdr.nat.gov.tw/ds_05_03.aspx

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE