簡易檢索 / 詳目顯示

研究生: 張媛鈞
Chang, Yang-jang
論文名稱: 評估cDNA微陣列資料的normalization方法
Appraisal for normalization methods in cDNA microarray data
指導教授: 詹世煌
Chan, Shin-Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 45
中文關鍵詞: normalization微陣列lowessspatial
外文關鍵詞: normalization, Microarray, lowess, spatial
相關次數: 點閱:152下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • cDNA microarray是近年來生物技術上研發出來的新方法,它能同時得到數千個基因表現值。但在Microarray的實驗過程中,無可避免地會產生系統性變異。在分析資料前必須先經過Normalization,以移除系統變異,否則將產生不良的影響。現階段已存在的normalization法各有其假設,因此不同的normalization依假設之滿足與否各有其績效。本研究的目的在比較median法、lowess法、block lowess法和spatial法的差異,並藉由模擬來了解normalization方法的表現及其適用情形。我們以百恩諾公司的microarray資料為例來說明各normalization法的應用。

    The cDNA microarray which can obtain thousands of gene expressions simultaneously is a new method in biotechnology developed in recent years. System variations usually occur during the process of microarray experiment, which result in wrong results in downstream analysis. In order to remove the systematic bias, normalization is necessary before analysing the microarray data. Each of the normalization method has each own assumptions, so the performance of normalization method relies on whether the assumptions are satisfied. The purpose of the study is to compare the performance of median method, lowess method, block lowess method and spatial method. Through simulation, we found the advantage of one normalization method is over another if the required assumption is satisfied. We use a microarray data from ABC Company to illustrate the simulation findings for different normalization methods.

    目錄 圖目錄 II 表目錄 II 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 第二章 Microarray實驗 2 2.1 Microarray實驗 2 2.2 資料篩選 3 2.3 Normalization methods 5 2.3.1 Median 法 5 2.3.2 Lowess 法 5 2.3.3 Spatial 法 6 第三章 統計模擬 10 3.1. 模擬設定 10 3.2. 模擬結果 12 第四章 實例分析 19 4.1. Microarray資料 19 4.2. 資料篩選 19 4.3. Normalization methods 20 4.4. Real-time PCR結果 23 4.5. 增加空間效果 24 第五章 結論與未來研究方向 26 5.1 結論 26 5.2 建議與未來研究方向 26 附 錄 28 圖目錄 圖2-1 自我雜交實驗資料 6 圖2-2 基因晶片的M-A plot及影像圖 7 圖2-5 Spatial normalization後的影像圖 8 圖3-1 空間設定圖 12 圖3-2 模擬結果:無空間效果中的區塊間差異小 15 圖3-3模擬結果:無空間效果中的區塊間差異大 15 圖3-4模擬結果:空間效果中的空間差異小 16 圖3-5模擬結果:空間效果中的空間差異中等 16 圖3-6模擬結果:空間效果中的空間差異大 17 圖3-7模擬結果:空間效果中的多塊空間差異 17 圖4-1 RT4_2的M-A plot 21 圖4-2 RT4_2的M-A plot 21 圖4-3 TSGH_1 Block 1的空間資料圖 22 圖4-4 TSGH_1 Block 1增加空間效果示意圖 25 表目錄 表3-2 模擬一次的結果 14 表4-1 Normalization後的M值與Real-time PCR的相關係數 23 表4-2 ANOVA表 24 表4-3 Normalization後的M與Real-time PCR的相關係數 25

    參考文獻

    1.Ballman, K. V., Grill, D. E., Oberg, O. L., Therneau, T. M. (2004). Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics, 20, 2778-2786.
    2.Dudoit, S., Yang, Y. H., Speed, T. P., and Callow, M. J. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12,111-139.
    3.Park, T., Yi, S. G.., Kang, S. H., Lee, S., Lee, Y. S., Simon, R.(2003). Evaluation of normalization methods for microarray data. BMC Bioinformatics, 4:33.
    4.Thomas, B. K., Lynn, C. and Kevin, T. M. (2003) Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biology, 3(7)
    5.Wilson, D. L., Buckley, M. J., Helliwell, C. A., Wilson, I. W. (2002). New normalization methods for cDNA microarray data. Bioinformatics, 19, 1325-1332.
    6.Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. P. (2001). Normalization for cDNA Microarray Data. In Bittner, M. L., Chen, Y., Dorsel, A. N. and Dougherty, E. R. (eds), Microarrays: Optical Technologies and Informatics. SPIE, Society for Optical Engineering, San Jose, CA.
    7.Yang, Y. H., Dudoit, S. D., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, 4 e15.

    下載圖示 校內:2007-07-04公開
    校外:2007-07-04公開
    QR CODE