簡易檢索 / 詳目顯示

研究生: 詹銘堯
Chan, Ming-Yao
論文名稱: 長期植入式電動液壓全人工心臟系統性能分析與控制設計
System Performance and Control Design of Long-term Implantable Electro-hydraulic Total Artificial Heart
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 144
中文關鍵詞: 自適應參考模型類神經控制電動液壓全人工心臟
外文關鍵詞: electro-hydraulic total artificial heart, neural adaptive model reference control
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   長期植入式機械輔助循環系統能否隨人體生理所需自動調適心臟輸出量(Cardiac Output),此為輔助循環系統能否長期在體內正常運作的關鍵因素。本論文旨在發展一套能夠隨著生理循環變化而自動調適的全人工心臟控制器;在發展此控制系統之前,應先行建立一套系統性能模擬程式以為基礎。一組設計良好的長期植入式機械輔助循環系統其關鍵在於建立一套動力模式。系統動力模式建構將以模組化的方式將系統分成數個次系統,每個次系統的功能並依據流體力學基本守恆律或電磁學公式將次系統動力寫成性能方程式,再將各次系統串接而成全系統性能方程組。全人工心臟是依照容積耦合(Volumetrically-coupled)法則運作,即利用電動液壓泵交替將左右心室的血液容積抽入或推出。至於本系統的關鍵參數則是以次系統測試台上所獲得的實驗數據來加以識別。系統性能模擬方程式以4階Runge-Kutta時間積分方法配合LU法來求解矩陣轉置問題(Matrix Inversion),當旋轉閥門開時的數值奇異問題,本文以降低系統階數來減輕其奇異特性。此一閉迴路系統模擬包含驅動機構及猶他生理模型非常詳細的揭示了許多關於人工心臟和人體心血管系統分別在正常和運動情況下的互動關係的有用認識。文中亦探討人工心臟用以平衡左右心輸出量機構對生理循環的影響,系統性能模擬程式證實臨床上的觀察就是當不恰當的分流(Shunt Flow)設計會使肺部壓力升高。
      本文提出一個類似史達林(Starling-like)心臟節律方法,在此自動節律下心輸出量與回流壓力(Return Pressure)成正比。控制邏輯會依據右心舒張或腔靜脈的平均壓力,決定系統應該對應的心搏數(Heart Rate),參考模型則依據心搏數決定主動脈及肺動脈壓力波形。最終藉由改變直流與步進馬達的轉速來達到生理控制的目的。自適應參考模型類神經控制技術應用於驅動直流馬達以完成適當的動脈壓力輸出。一般式訓練(General Training)能提供此類神經控制器具有一個合理的初始加權值,這些權值再經由特別的訓練(Special Training)程序及系統的Jacobian來修正,此類神經控制器顯示出其具有快速達到期望壓力之輸出。包函比例(Proportional)、比例及積分(Proportional and Integration)與增益值排程(Gain Scheduling)共三種類似史達林的節律控制邏輯被提出及驗證。此三種邏輯均可達到史達林心輸出調節的功效,而增益值排程的方法可視為最恰當且快速的節律方法。

      Whether an implantable mechanical circulation support system can be accepted by patients as a long-term device depends primarily on the ability of the implanted system in delivering sufficient cardiac output according to the physiological requirements. The present research aims at developing a controller that can support the total artificial heart (TAH) in operating autonomously in response to the physiological changes. To accomplish this design objective, a system performance simulation code has to be constructed first as the framework of analysis. Modular approach has been adopted in the present system dynamics construction of the NCKU electro-hydraulic total artificial heart (EHTAH). Modules have been modeled using subsystem performance maps, fluid dynamic conservation laws, and/or electromagnetic and circuit equations, respectively. The current NCKU EHTAH design employs an electro-hydraulic pumping system that alternatively ejects and fills the right and left ventricles in a volumetrically-coupled manner. Critical parameters of the NCKU EHTAH system were identified using experimental data obtained from the subsystem rig test results, resulting in a dynamic system of 15 state variables representing critical physical characteristics of the EHTAH system. Time-marching of these system equations were performed using 4th order Runge-Kutta method in conjunction with the lower-upper decomposition for the matrix inversion. Numerical singularities occur at the instances of valve opening and closing. This singular behavior was alleviated by solving a reduced order system. Closed-loop simulations of the coupled EHTAH and the Utah Circulation Model (UCM) with bronchial bypass modification reveal in detail many useful understandings of how TAH and human cardiovascular system interact. The influence of TAH shunt flow design was also studied to see whether the present TAH can deliver differential cardiac outputs as required by the left and right heart pumping characteristics. It is demonstrated in the system performance simulation that improper shunt flow design will result in the pulmonary pressure elevation as already observed in the clinical experiences.
      A Starling-like cardiac control scenario is proposed in the present work. In this Starling-like auto-regulation, cardiac output increases in accordance with the elevation of the blood return pressure. A reference model was constructed with right ventricle diastolic or venous return mean pressure considered as the input and the heart rate and subsequently the desired aortic and pulmonary arterial pressure waveforms as the output. Physiologically compatible TAH actuation is fulfilled by regulating the switching and torque motor speeds subject to the control logic and the reference model developed. In the pressure tracking control design, the method of neural adaptive model reference control was employed. General training has been enforced to provide a reasonable initial guess of the weights associated with the neural network of the controller. These weights were fine tuned via a specialized training procedure for which the plant Jacobian was used. The trained neural controller shows a fast response in the pressure tracking control. Three Starling-like control logics, namely, error proportional, proportional and integration of error, and gain scheduling, were proposed and examined. All three logics can lead to Starling effect blood regulation, however with different transient behaviors. Gain scheduling logic is fount most appealing for it can regulate the cardiac output change in a rapid, monotonic manner.

    CONTENTS ABSTRACT.........................................i CONTENTS........................................iv LIST OF TABLES..................................vi LIST OF FIGURES................................vii NOMENCLATURE....................................xi Chapter Page I. Introduction..............................1 1-1 Brief Historical Perspective..........1 1-2 Artificial Heart and Ventricular Assist Device.....4 1-3 Leading-edge Mechanical Circulation Support Systems....7 1-4 NCKU Mechanical Circulation Support Systems....9 1-5 Cardiac Output and Its Control.......10 1-6 Thesis Outline.......................13 II. SYSTEM DYNAMIC MODELING..................14 2-1 Modular Design and System Approach...14 2-2 Description of Subsystems............15 2-3 Subsystem Modeling...................20 2-3-1 Micro-Pump/Switching Valve Assembly....21 2-3-2 DC Torque Motor............23 2-3-3 Artificial Cardiac Valves..24 2-3-4 Systemic Circulation.......25 2-3-5 Bronchial Bypass and TAH Shunt Balance Mechanism....27 2-4 System Dynamic Equations.............29 2-4-1 NCKU EHTAH State Equations.30 2-4-2 Summary of State Equations.35 2-5 Time Integration and Singularities...36 III. SUBSYSTEM IN-VITRO TESTS...................39 3-1 Hydraulic Driver Performance Test....39 3-2 DC Motor Performance Test............41 3-3 Artificial Heart Valve Performance Test ....42 IV. PHYSIOLOGICAL CONTROLLER DESIGN..........44 4-1 Starling-like Heart Control..........44 4-2 Neural Controller Characteristics....46 4-3 Neural Controller Algorithm..........49 4-3-1 General Training Method....52 4-3-2 Specialized Training Method ....53 4-3-3 Neural Controller Pressure Tracking Simulation....54 4-4 EHTAH Shunt Flow Balance.............56 4-5 EHTAH Physiological Control..........59 4-6 EHTAH Reference Model Generation.....61 4-7 Control Logic of NCKU EHTAH..........63 V. CONCLUSIONS AND RECOMMENDATIONS..........67 5-1 Conclusions..........................67 5-2 Recommendations......................68 REFERENCES.......................................71 APPENDIX A.......................................78 APPENDIX B.......................................80 TABLES...........................................84 FIGURES..........................................90

    [1] Ahn, J. M., Masuzawa, T., Taenaka, Y., Tatsumi, E., Ohno, T., et al., “Development of a Precise Controller for an Electro-hydraulic Total Artificial Heart: Improvement of the Motor's Dynamic Response,” ASAIO Journal, Vol. 42, 1996, M584-589.
    [2] Allen, G. S., Murray, K. D., and Olsen, D. B., “Control of the Artificial Heart,” ASAIO Journal, Vol. 42, 1996, M932-937.
    [3] Burke, D., Burke, E., Parsaie, F., Poirier, V., Butler, K. Thomas, D., Taylor, L., and Maher, T., “The HeartMate II: Design and Development of a Fully Sealed Axial Flow Left Ventricle Assist System,” Artificial Organs, Vol. 25, No. 5, 2001, pp. 380-385.
    [4] Butler, J., The Bronchial Circulation, Lung Biology in Health and Disease, Vol. 57, Marcel Dekker, Inc., New York, ISBN 0-8247-8443-X, 1992.
    [5] Benham, R. D., “An ISL-8 and ISL-15 Study of the Physiological Simulation Benchmark Experiment,” Simulation, Vol. 16, Apr. 1972, pp. 152-156.
    [6] Cannon, Jr. R. H., Dynamics of Physical Systems, McGraw-Hill, Inc., New York, 1967.
    [7] Chan, R. L., “Manufacturing and Performance Evaluation of Polyurethane Artificial Heart,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C., 2003.
    [8] Chan, S., and Billings, S. A., “Neural Networks for Nonlinear Dynamic System Modeling and Identification,” International Journal of Control, Vol. 56, 1992, pp. 319-346.
    [9] Chiu, W. Y., “Flow Characteristic of Prosthetic Aortic Heart Valve,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C., 2002.
    [10] Clark, C., “Energy Losses in Flow Through Stenosed Valves,” Journal of Biomechanics, Vol. 12, 1979, pp. 737-746.
    [11] Faller, W. E., Schreck, S. J., and Luttges, M. W., “Real-Time Prediction and Control of Three-Dimensional Unsteady Separated Flow Fields Using Neural Networks,” AIAA Paper 94-0532, Jan. 1994, pp. 10-13.
    [12] Faller, W. E., and Schreck, S. J., “Unsteady Fluid Mechanics Applications of Neural Networks,” AIAA Paper 95-0529, Jan. 1995, pp. 9-12.
    [13] Faller, W. E., and Schreck, S. J., “Neural Networks: Applications an Opportunities in Aeronautics,” Progress of Aerospace Science, Vol. 32, 1996, pp. 433-456.
    [14] Faller, W. E., Smith W. E., and Huang, T. T., “Applied Dynamic System Modeling: Six Degree-of-Freedom Simulation of Forced Unsteady Maneuvers Using Recursive Neural Networks,” AIAA Paper 97-0336, Jan. 1997, pp. 6-10.
    [15] Fausett, L., Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice Hall, Englewood Cliffs, New Jersey, ISBN 0-13-334186-0, 1994.
    [16] Frazier, O. H., Myers, T. J., Jarvik, R. K., Westaby, S., David, W., et al., “Research and Development of an Implantable, Axial-flow Left Ventricular Assist Device: the Jarvik 2000 Heart,” Ann Thorac Surg, Vol. 71, 2001, pp. 125-132.
    [17] Fu, M., et al., “Design of a DSP Controller for an Innovative Ventricular Assist System,” ASAIO Journal, Vol. 43, 1997, M615-619.
    [18] Gabbay, S., Mcqueen, D. M., Yelin, E. L., and Frater, R. W. M., “In Vitro Hydrodynamic Comparison of Mitral Valve Bioprostheses,” Supplement 1 Circulation, Vol. 60, No.2, 1979, pp. I-62-I-70.
    [19] Germann, W. J., and Stanfield, C. L., Principles of Human Physiology, Pearson Education, Inc., ISBN 0-321-19053-x, 2001.
    [20] Gili, P. A., and Battipede M., “Adaptive Neurocontroller for a Nonlinear Combat Aircraft Model,” Journal of Guidance, Control, and Dynamics, Vol.24, No.5, 2001, pp. 910-917.
    [21] Giridharan, G. A., Skliar, M., Olsen, D. B., and Pantalos, G. M., “Modeling and Control of a Brushless DC Axial Flow Ventricular Assist Device,” ASAIO Journal, Vol. 48, 2002, pp. 272-289.
    [22] Goldstein, D. J., Oz, M. C., and Rose, E. A., “Implantable Left Ventricular Assist Devices,” The New England Journal of Medicine, Vol. 339, No. 21, 1998, pp. 1522-1533.
    [23] Guyton, A. C., Human Physiology and Mechanisms of Disease, W. B. Saunders, Philadelphia Pennsylvania, 1982.
    [24] Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey, ISBN 0-02-352761-7, 1994.
    [25] Huang, C. H., “The Performance Test of A Liquid Pump for Artificial Heart,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C., 1999.
    [26] Hung, T. M., “Design and Analysis of a Mixed-Flow Pump Used in Artificial Heart,” M.S. Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C., 2004.
    [27] Johnson, K. E., Liska, M. B., Joyce, L. L., and Emery, R. W., “Use of Total Artificial Hearts: Summary of World Experience 1969-1991,” ASAIO Journal, Vol. 38, 1992, M486-492.
    [28] Kim, H. C., Khanwilkar, P. S., Bearnson, G. B., and Olsen, D. B., “Development of a Microcontroller-based Automatic Control System for the Eelectrohydraulic Total Artificial Heart,” Biomedical Engineering, IEEE Transactions, Vol. 44, Issue 1, Jan. 1997, pp. 77-89.
    [29] Kinoshita, M., Hansen, C. A., Khanwilkan, K. S., White, K. R., and Olsen, D. B., “Determination of Atrial Shunt Size Needed to Balance an Electrohydraulic Total Artificial Heart,” ASAIO Journal, Vol. 37, 1991, M264-265.
    [30] Knott, E., Reul, H., Knoch, M., Steinseifer, U., and Rau, G., “In-Vitro Comparison of Aortic Heart Valve Prostheses Part I: Mechanical Valves,” Journal of Thoracic and Cardiovascular Surgery, Vol. 96, 1988, pp. 952-961.
    [31] Kung, R. T. V., Yu, L. S., Ochs, B. D., Parnis, S., and Frazier, O., “An Atrial Hydraulic Shunt in a Total Artificial Heart A Balance Mechanism for the Bronchial Shunt,” ASAIO Journal, Vol. 39, 1993, M213-217.
    [32] Kung R. T. V., Yu, L. S., Ochs, B. D., Parnis, S., Macris, M., and Frazier, O., “Progress in the Development of the ABIOMED Total Artificial Heart,” ASAIO Journal. Vol. 41, 1995, M245-248.
    [33] Lioi, A. P., Orth, J. R., Crump, K. R., et al., “In Vitro Development of Automatic Control for the Activity Filled Electrohydraulic Heart,” Artificial Organs, Vol. 12, 1988, pp. 152-162.
    [34] Lippmann, R. P., “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine, Apr. 1987, pp. 4-22.
    [35] Long, J. W., Khanwilkar, P., Crump, K. R., et al., “Right-Left Ventricular Balance in Implanted Electrically Powered Total Artificial Hearts,” ASAIO Journal. Vol. 36, 1990, M287-290.
    [36] Long, J. W., “Advanced Mechanical Circulatory Support with the HeartMate Left Ventricular Assist Device in the Year 2000,” Ann Thorac Surg, Vol.71, 2001, pp. 176-182.
    [37] Lu, P. C., Liu, J.S., Cheng, K.K., and Ewi, J., “An Investigation of the Flow within the Phoenix Artificial heart,” Biomedical Engineering-Application, Basis Communication, Vol. 11, No. 5, Oct. 1999, pp. 277-284.
    [38] Lu, P. J., “System Performance and Control Design of Electro-hydraulic Total Artificial Heart,” Final Report, NSC88-2213-E006-086, 1999.
    [39] Lu, P. J., Zhang, M. C., Hsu, T. C., and Zhang, J., “An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 123, No. 2, April 2001, pp. 340-346.
    [40] Lu, P. J., and Hsu, T. C., “Application of Autoassociative Neural Network on Gaspath Sensor Data Validation,” AIAA Journal of Propulsion and Power, Vol. 18, No. 4, July-Aug. 2002, pp. 879-888.
    [41] Madou, M., Fundamentals of Microfabrication, CRC Press LLC, Boca Raton, Florida, ISBN 0-8493-9451-1, 1997.
    [42] Maslen, E. H., Bearnson, G. B., Allaire, et al., “Artificial Heart,” IEEE International Conference on Control Applications, Oct. 5-7, 1997, pp. 204-209.
    [43] Maslen, E. H., Bearnson, G. B., Allaire, et al., “Feedback Control Applications in Artificial Heart,” Control Systems Magazine, IEEE Vol. 18, Issue 6, Dec. 1998, pp. 26-34.
    [44] Mehta, S. M., et al., “The Lion Heart LDV-2000: A Completely Implanted Left Ventricular Assist Device for Chronic Circulatory Support,” Ann Thorac Surg, Vol. 71, 2001, pp. 156-161.
    [45] Miller, L. W., “Patient Selection for the Use of Ventricular Assist Devices as a Bridge to Transplantation,” Ann Thorac Surg, Vol. 75, 2003, pp. 66-71.
    [46] Miller, W. T., Sutton, R. S., and Werbos, P. J., Neural Networks for Control, The MIT Press, Cambridge, Massachusetts, 1990.
    [47] Mueller F. D., Nobbs, S. G., and Stewart, J. F., “Dual Engine Application of the Performance Seeking Control Algorithm,” AIAA Paper 93-1822, 1993.
    [48] Narendra, K. S. and Parthasarathy, K., “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, March 1990, pp. 1-27.
    [49] Nobbs, S. G., Jacobs, S. W., and Donahue, D. J., “Development of the Full-Envelope Performance Seeking Control Algorithm,” AIAA Paper 92-3748, Jul. 1992, pp. 6-8.
    [50] Olsen, D. B., “The History of Continuous-Flow Blood Pumps,” Artificial Organs, Vol. 24, No. 6, 2000, pp. 401-404.
    [51] Peskin, C. S., “The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods,” Annual Review of Fluid Mechanics, Vol. 14, 1982, pp. 235-259.
    [52] Reichenbach, S. H., Farrar, D. J., and Hill, J. D., “A Versatile Intracoporeal Ventricular Assis Device Based on the Thoratec VAD System,” Ann Thorac Surg, Vol. 71, 2001, pp. 171-175.
    [53] Psaltis, D., Sideris, A., and Yamamura, A. A., “A Multilayered Neural Controller,” IEEE Control Systems Magazine, April 1990, pp. 17-21.
    [54] Rose, E. A. et al., “The REMATCH Trial: Rationale, Design, and End Points,” Annal of Thoracic Surgeons, Vol. 67, 1999, pp. 723-730.
    [55] Rose, E. A. et al., “Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure,” The New England Journal of Medicine, Vol. 345, 2001, pp. 1435-1443.
    [56] Sharp, M. K., and Dharmalingam, R. K., “Development of a Hydraulic Model of the Human Systemic Circulation,” ASAIO Journal, Vol. 45, 1999, M535-540.
    [57] Snyder, A. J., Rosenberg G., Reibson J., et al., “An Electrically Powered Total Artificial Heart,” ASAIO Journal. Vol. 38, 1992, M707-712.
    [58] Song, X., Throckmorton, A. L., Untaroiu, A., Patel, S., Allaire, P. E., Wood, H. G., and Olsen, D. B., “Axial Flow Blood Pump,” ASAIO Journal. Vol. 49, 2003, M355-364.
    [59] Stevenson, L. W., and Kormos, R. L., “Mechanical Cardiac Support 2000: Current Applications and Future Trial Design,” Journal of the American College of Cardiology, Vol. 37, No. 1, 2001, pp. 340-370.
    [60] Taenaka, Y., Sekii, H., Tatsumi, E., et al., “An Electrohydraulic Total Artificial Heart with a Separately Placed Actuator,” ASAIO Journal. Vol. 36, 1990, M242-245.
    [61] Tatsumi, E., Diegel, P. D., Holfert, J. W., et al., “A Blood Pump with an Interatrial Shunt for Use as an Electrohydraulic Total Artificial Heart,” ASAIO Journal. Vol. 38, 1992, M425-430.
    [62] Vitali, E., Lanfranconi, M., Ribera, E., et al., “Successful Experience in Bridging Patients to Heart Transplantation with the MicroMed DeBakey Ventricular Assist Device,” Ann Thorac Surg, Vol. 75, 2003, pp. 1200-1204.
    [63] Wang, D., and Bao, P., “Enhancing the Estimation of Plant Jacobian for Adaptive Neural ,” Neurocomputing, No. 34, 2000, pp. 99-115.
    [64] Weiss, W. J., Rosenberg, G., Snyder A. J., et al., “Steady State Hemodynamic and Energetic Characterization of the Penn State/3M Health Care Total Artificial Heart,” ASAIO Journal, Vol. 45, 1999, M189-193.
    [65] Widrow B., and Walach E., Adaptive Inverse Control, Prentice-Hall, Inc., ISBN 0-13-005968-4, 1995.
    [66] Yoganathan, A. P., Sung, H. W., and Williams, F. P., “Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques,” Journal of the American College of Cardiology, Vol. 12, No. 5, 1988, pp. 1344-1353.

    下載圖示 校內:立即公開
    校外:2004-08-27公開
    QR CODE